메뉴 건너뛰기




Volumn 15, Issue 3-4, 1998, Pages 325-332

Interactive structural learning of Bayesian networks

Author keywords

Bayesian networks; Learning; MDL

Indexed keywords


EID: 0348117206     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/s0957-4174(98)00050-5     Document Type: Article
Times cited : (12)

References (15)
  • 1
    • 84933530882 scopus 로고
    • Approximating probability distributions with dependence trees
    • Chow C. K., & Liu C. N. (1968). Approximating probability distributions with dependence trees. IEEE Transactions on Information Theory, 14 (3), 462-468.
    • (1968) IEEE Transactions on Information Theory , vol.14 , Issue.3 , pp. 462-468
    • Chow, C.K.1    Liu, C.N.2
  • 2
    • 0025401005 scopus 로고
    • The computational complexity of probabilistic inference using Bayesian networks
    • Cooper G. F. (1990). The computational complexity of probabilistic inference using Bayesian networks. Artificial Intelligence, 42, 393-405.
    • (1990) Artificial Intelligence , vol.42 , pp. 393-405
    • Cooper, G.F.1
  • 3
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper G. F., & Herskovits E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309-347.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 4
    • 0020918216 scopus 로고
    • A computational model for combined causal and diagnostic reasoning in inference systems
    • Kim, J. & Pearl, J. (1983). A computational model for combined causal and diagnostic reasoning in inference systems. In Proceedings IJCAI, pp. 190-193.
    • (1983) Proceedings IJCAI , pp. 190-193
    • Kim, J.1    Pearl, J.2
  • 5
    • 0030419236 scopus 로고    scopus 로고
    • Using hidden nodes in Bayesian networks
    • Kwoh C. K., & Gillies D. F. (1997). Using hidden nodes in Bayesian networks. Artificial Intelligence, 88, 1-38.
    • (1997) Artificial Intelligence , vol.88 , pp. 1-38
    • Kwoh, C.K.1    Gillies, D.F.2
  • 6
    • 0028482006 scopus 로고
    • Learning Bayesian networks. An approach based on the MDL principle
    • Lam W., & Bacchus F. (1994). Learning Bayesian networks. An approach based on the MDL principle. Computational Intelligence, 10 (2), 269-293.
    • (1994) Computational Intelligence , vol.10 , Issue.2 , pp. 269-293
    • Lam, W.1    Bacchus, F.2
  • 7
    • 0001006209 scopus 로고
    • Local computations with probabilities on graphical structures and their application to expert systems
    • Lauritzen S. L., & Spiegelhalter D. J. (1988). Local computations with probabilities on graphical structures and their application to expert systems. Journal Royal Statistical Society B, 50 (2), 157-224.
    • (1988) Journal Royal Statistical Society B , vol.50 , Issue.2 , pp. 157-224
    • Lauritzen, S.L.1    Spiegelhalter, D.J.2
  • 8
    • 0025414881 scopus 로고
    • Uncertainty management in expert systems
    • Ng K. C., & Abramson B. (1990). Uncertainty management in expert systems. IEEE Expert, 5 (2), 29-48.
    • (1990) IEEE Expert , vol.5 , Issue.2 , pp. 29-48
    • Ng, K.C.1    Abramson, B.2
  • 9
    • 38249042461 scopus 로고
    • On evidential reasoning on a hierarchy of hypothesis
    • Pearl J. (1986). On evidential reasoning on a hierarchy of hypothesis. Artificial Intelligence, 28, 9-15.
    • (1986) Artificial Intelligence , vol.28 , pp. 9-15
    • Pearl, J.1
  • 11
    • 0042456355 scopus 로고
    • The recovery of causal poly-trees from statistical data
    • L. N. Kanal, T. S. Levitt & J. F. Lemmer (Eds.), Amsterdam: North-Holland
    • Rebane, G. & Pearl, J. (1989). The recovery of causal poly-trees from statistical data. In L. N. Kanal, T. S. Levitt & J. F. Lemmer (Eds.), Uncertainty in Artificial Intelligence 3 (pp. 175-182). Amsterdam: North-Holland.
    • (1989) Uncertainty in Artificial Intelligence , vol.3 , pp. 175-182
    • Rebane, G.1    Pearl, J.2
  • 12
    • 0002599654 scopus 로고
    • Why machines should learn?
    • R. S. Michalski, T. M. Mitchell & J. Carbonell (Eds.), Los Altos, CA: Morgan-Kaufmann
    • Simon, H. A. (1983). Why machines should learn? In R. S. Michalski, T. M. Mitchell & J. Carbonell (Eds.), Machine Learning (pp. 25-37). Los Altos, CA: Morgan-Kaufmann.
    • (1983) Machine Learning , pp. 25-37
    • Simon, H.A.1
  • 13
    • 0008576772 scopus 로고
    • Automated construction of sparse Bayesian networks from unstructured probabilistic models and domain information
    • M. Henrion, R. D. Shachter, L. N. Kanal, & J. F. Lemmer (Eds.), Amsterdam: North-Holland
    • Srinivas, S., Russell, S. & Agogino, A. (1990). Automated construction of sparse Bayesian networks from unstructured probabilistic models and domain information. In M. Henrion, R. D. Shachter, L. N. Kanal, & J. F. Lemmer (Eds.), Uncertainty in Artificial Intelligence 5 (pp. 295-308). Amsterdam: North-Holland.
    • (1990) Uncertainty in Artificial Intelligence , vol.5 , pp. 295-308
    • Srinivas, S.1    Russell, S.2    Agogino, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.