메뉴 건너뛰기




Volumn 29, Issue 3, 2005, Pages 653-666

Auto claim fraud detection using Bayesian learning neural networks

Author keywords

Automobile insurance; Bayesian learning; Claim fraud; Evidence framework; IB40; Neural network

Indexed keywords

ACCIDENTS; AUTOMOBILES; INDUSTRIAL ECONOMICS; INSURANCE; LEARNING SYSTEMS; NEURAL NETWORKS;

EID: 24144501096     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2005.04.030     Document Type: Article
Times cited : (91)

References (59)
  • 2
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting and variants
    • E. Bauer, and R. Kohavi An empirical comparison of voting classification algorithms: Bagging, boosting and variants Machine Learning 36 1/2 1999 105 139
    • (1999) Machine Learning , vol.36 , Issue.12 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 4
    • 0034241361 scopus 로고    scopus 로고
    • Gradient-based optimization of hyper-parameters
    • Y. Bengio Gradient-based optimization of hyper-parameters Neural Computation 12 8 2000 1889 1900
    • (2000) Neural Computation , vol.12 , Issue.8 , pp. 1889-1900
    • Bengio, Y.1
  • 7
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman Random forests Machine Learning 45, (1) 2001 5 32
    • (2001) Machine Learning , vol.451 , pp. 5-32
    • Breiman, L.1
  • 9
    • 0003637516 scopus 로고
    • PhD Thesis. School of Computing Science, University of Technology Sydney
    • Buntine, W.L. (1990). A theory of learning classification rules. PhD Thesis. School of Computing Science, University of Technology Sydney.
    • (1990) A Theory of Learning Classification Rules
    • Buntine, W.L.1
  • 10
    • 33645601653 scopus 로고    scopus 로고
    • Canadian coalition against Insurance fraud
    • Canadian Coalition Against Insurance fraud. (2002). Insurance fraud, http://www.fraudcoalition.org/.
    • (2002) Insurance Fraud
  • 12
    • 33645591914 scopus 로고    scopus 로고
    • Coalition against Insurance Fraud
    • Coalition Against Insurance Fraud (2002). Insurance fraud: The crime you pay for, http://www.insurancefraud.org/fraud_backgrounder.htm.
    • (2002) Insurance Fraud: The Crime You Pay for
  • 13
    • 1842451166 scopus 로고    scopus 로고
    • The European insurance anti-fraud guide
    • Paris: Euro Publishing System
    • Comité Européen des Assurances. (1996). The European insurance anti-fraud guide. CEA info special issue 4. Paris: Euro Publishing System.
    • (1996) CEA Info Special Issue 4
  • 14
    • 33645601787 scopus 로고    scopus 로고
    • The European insurance anti-fraud guide 1997 update
    • Comité Européen des Assurances. (1997). The European insurance anti-fraud guide 1997 update. CEA info special issue 5 Paris: Euro Publishing System.
    • (1997) CEA Info Special Issue 5 Paris: Euro Publishing System
  • 16
    • 85028857490 scopus 로고
    • Bayes and pseudo-bayes estimates of conditional probabilities and their reliability
    • Vienna
    • Cussens, J. (1993). Bayes and pseudo-Bayes estimates of conditional probabilities and their reliability. Proceedings of the sixth European conference on machine learning, Vienna (pp. 136-152).
    • (1993) Proceedings of the Sixth European Conference on Machine Learning , pp. 136-152
    • Cussens, J.1
  • 17
    • 33645588126 scopus 로고    scopus 로고
    • Special issue on insurance fraud
    • Derrig, R. A. (Ed.) (2002), Special issue on insurance fraud. Journal of Risk and Insurance 69 (3).
    • (2002) Journal of Risk and Insurance , vol.69 , Issue.3
    • Derrig, R.A.1
  • 18
    • 10044243164 scopus 로고    scopus 로고
    • AIB PIP screening experiment final report - Understanding and improving the claim investigation process
    • Boston: Automobile insurers Bureau of Massachusetts
    • Derrig, R. A., & Weisberg, H. (1998). AIB PIP screening experiment final report - Understanding and improving the claim investigation process. AIB Cost Containment/Fraud Filing DOI Docket R98-41 (IFRR-267). Boston: Automobile insurers Bureau of Massachusetts.
    • (1998) AIB Cost Containment/Fraud Filing DOI Docket R98-41 (IFRR-267)
    • Derrig, R.A.1    Weisberg, H.2
  • 19
    • 0030291564 scopus 로고    scopus 로고
    • Jr A comparison of neural networks and linear scoring models in the credit union environment
    • V.S. Desai, J.N. Crook, and G.A. Overstreet Jr., Jr A comparison of neural networks and linear scoring models in the credit union environment European Journal of Operational Research 95 1 1996 24 37
    • (1996) European Journal of Operational Research , vol.95 , Issue.1 , pp. 24-37
    • Desai, V.S.1    Crook, J.N.2    Overstreet Jr., G.A.3
  • 20
    • 0020748239 scopus 로고
    • Computer-intensive methods in statistics
    • P. Diaconis, and B. Efron Computer-intensive methods in statistics Scientific American 248 5 1983 116 130
    • (1983) Scientific American , vol.248 , Issue.5 , pp. 116-130
    • Diaconis, P.1    Efron, B.2
  • 29
    • 0003562954 scopus 로고    scopus 로고
    • A simple generalisation of the area under the ROC curve for multiple class classification problems
    • D.J. Hand, and R.J. Till A simple generalisation of the area under the ROC curve for multiple class classification problems Machine Learning 45 2 2001 171 186
    • (2001) Machine Learning , vol.45 , Issue.2 , pp. 171-186
    • Hand, D.J.1    Till, R.J.2
  • 30
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • J.A. Hanley, and B.J. McNeil The meaning and use of the area under a receiver operating characteristic (ROC) curve Radiology 143 1 1982 29 36
    • (1982) Radiology , vol.143 , Issue.1 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 32
    • 0000661829 scopus 로고
    • An exploratory technique for investigating quantities of categorical data
    • G.V. Kass An exploratory technique for investigating quantities of categorical data Applied Statistics 29 2 1980 119 127
    • (1980) Applied Statistics , vol.29 , Issue.2 , pp. 119-127
    • Kass, G.V.1
  • 35
    • 0030241497 scopus 로고    scopus 로고
    • Hybrid neural network models for bankruptcy predictions
    • K.C. Lee, I. Han, and Y. Kwon Hybrid neural network models for bankruptcy predictions Decision Support Systems 18 1 1996 63 72
    • (1996) Decision Support Systems , vol.18 , Issue.1 , pp. 63-72
    • Lee, K.C.1    Han, I.2    Kwon, Y.3
  • 36
    • 0000234257 scopus 로고
    • The evidence framework applied to classification networks
    • D.J.C. MacKay The evidence framework applied to classification networks Neural Computation 4 5 1992 720 736
    • (1992) Neural Computation , vol.4 , Issue.5 , pp. 720-736
    • MacKay, D.J.C.1
  • 37
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • D.J.C. MacKay A practical Bayesian framework for backpropagation networks Neural Computation 4 3 1992 448 472
    • (1992) Neural Computation , vol.4 , Issue.3 , pp. 448-472
    • MacKay, D.J.C.1
  • 38
    • 0028698662 scopus 로고
    • Bayesian non-linear modelling for the energy prediction competition
    • D.J.C. MacKay Bayesian non-linear modelling for the energy prediction competition ASHRAE Transactions 100 2 1994 1053 1062
    • (1994) ASHRAE Transactions , vol.100 , Issue.2 , pp. 1053-1062
    • MacKay, D.J.C.1
  • 39
    • 84950629115 scopus 로고
    • Comment on Smith and Campbell: You should standardize the predictor variables in your regression models
    • D.W. Marquardt Comment on Smith and Campbell: You should standardize the predictor variables in your regression models Journal of the American Statistical Association 75 369 1980 87 91
    • (1980) Journal of the American Statistical Association , vol.75 , Issue.369 , pp. 87-91
    • Marquardt, D.W.1
  • 43
    • 0001854616 scopus 로고    scopus 로고
    • Assessing relevance determination methods using Delve
    • C.M. Bishop Springer New York
    • R.M. Neal Assessing relevance determination methods using Delve C.M. Bishop Neural networks and machine learning 1998 Springer New York
    • (1998) Neural Networks and Machine Learning
    • Neal, R.M.1
  • 45
    • 0030352275 scopus 로고    scopus 로고
    • Reducing variance of committee prediction with resampling techniques
    • B. Parmanto, P.W. Munro, and H.R. Doyle Reducing variance of committee prediction with resampling techniques Connection Science 8 3/4 1996 405 426
    • (1996) Connection Science , vol.8 , Issue.34 , pp. 405-426
    • Parmanto, B.1    Munro, P.W.2    Doyle, H.R.3
  • 46
    • 0032749972 scopus 로고    scopus 로고
    • Financial credit-risk evaluation with neural and neurofuzzy systems
    • S. Piramuthu Financial credit-risk evaluation with neural and neurofuzzy systems European Journal of Operational Research 112 2 1999 310 321
    • (1999) European Journal of Operational Research , vol.112 , Issue.2 , pp. 310-321
    • Piramuthu, S.1
  • 47
    • 0042346121 scopus 로고    scopus 로고
    • Tree induction for probability-based ranking
    • F.J. Provost, and P. Domingos Tree induction for probability-based ranking Machine Learning 52 3 2003 199 215
    • (2003) Machine Learning , vol.52 , Issue.3 , pp. 199-215
    • Provost, F.J.1    Domingos, P.2
  • 48
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • F.J. Provost, and T. Fawcett Robust classification for imprecise environments Machine Learning 42 3 2001 203 231
    • (2001) Machine Learning , vol.42 , Issue.3 , pp. 203-231
    • Provost, F.J.1    Fawcett, T.2
  • 51
    • 0000669406 scopus 로고    scopus 로고
    • Neural network experiments in business failures prediction: A review of predictive performance issues
    • R. Sharda, and R. Wilson Neural network experiments in business failures prediction: A review of predictive performance issues International Journal of Computational Intelligence and Organizations 1 2 1996 107 117
    • (1996) International Journal of Computational Intelligence and Organizations , vol.1 , Issue.2 , pp. 107-117
    • Sharda, R.1    Wilson, R.2
  • 55
    • 1842451173 scopus 로고    scopus 로고
    • A comparison of state-of-the-art classification techniques for expert automobile insurance claim fraud detection
    • S. Viaene, R.A. Derrig, B. Baesens, and G. Dedene A comparison of state-of-the-art classification techniques for expert automobile insurance claim fraud detection Journal of Risk and Insurance 69 3 2002 373 421
    • (2002) Journal of Risk and Insurance , vol.69 , Issue.3 , pp. 373-421
    • Viaene, S.1    Derrig, R.A.2    Baesens, B.3    Dedene, G.4
  • 56
    • 0001779764 scopus 로고
    • Fraud and automobile insurance: A report on the baseline study of bodily injury claims in Massachusetts
    • H.I. Weisberg, and R.A. Derrig Fraud and automobile insurance: A report on the baseline study of bodily injury claims in Massachusetts Journal of Insurance Regulation 9 4 1991 497 541
    • (1991) Journal of Insurance Regulation , vol.9 , Issue.4 , pp. 497-541
    • Weisberg, H.I.1    Derrig, R.A.2
  • 58
    • 1842555740 scopus 로고    scopus 로고
    • Quantitative methods for detecting fraudulent automobile bodily injury claims
    • H.I. Weisberg, and R.A. Derrig Quantitative methods for detecting fraudulent automobile bodily injury claims Risques 35 1998 75 101
    • (1998) Risques , vol.35 , pp. 75-101
    • Weisberg, H.I.1    Derrig, R.A.2
  • 59


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.