메뉴 건너뛰기




Volumn , Issue , 2004, Pages 640-645

Learning multi-time delay gene network using Bayesian network framework

Author keywords

Bayesian Networks; Gene Network; Learning by modification; Mutual information

Indexed keywords

BAYESIAN NETWORKS (BN); GENE NETWORKS; LEARNING BY MODIFICATION; MUTUAL INFORMATION;

EID: 16244373943     PISSN: 10823409     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICTAI.2004.79     Document Type: Conference Paper
Times cited : (13)

References (18)
  • 1
    • 0032616683 scopus 로고    scopus 로고
    • Identification of genetic getworks from a small number of gene expression patterns under the Boolean network model
    • T. Akutsu, S. Miyano, and S. Kuhara. Identification of Genetic Getworks from a Small Number of Gene Expression Patterns Under the Boolean Network Model. In PSB, pages 17-28, 1999.
    • (1999) PSB , pp. 17-28
    • Akutsu, T.1    Miyano, S.2    Kuhara, S.3
  • 2
    • 0002207004 scopus 로고    scopus 로고
    • Discovering the hidden structure of complex dynamic systems
    • X. Boyen, N. Friedman, and D. Koller. Discovering the Hidden Structure of Complex Dynamic Systems. In UAI, 1999.
    • (1999) UAI
    • Boyen, X.1    Friedman, N.2    Koller, D.3
  • 3
    • 0032668662 scopus 로고    scopus 로고
    • Identifying gene regulatory networks from exprimental data
    • T. Chen, V. Filkov, and S. Skiena. Identifying Gene Regulatory Networks from Exprimental Data. In RECOMB, pages 94-103, 1999.
    • (1999) RECOMB , pp. 94-103
    • Chen, T.1    Filkov, V.2    Skiena, S.3
  • 4
    • 0032611513 scopus 로고    scopus 로고
    • Modeling gene expression with differential equations
    • T. Chen, H. He, and G. Church. Modeling Gene Expression with Differential Equations. In PSB, volume 4, pages 29-40, 1999.
    • (1999) PSB , vol.4 , pp. 29-40
    • Chen, T.1    He, H.2    Church, G.3
  • 5
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • G. Cooper and E. Herskovits. A Bayesian Method for The Induction of Probabilistic Networks from Data. Machine Learning, 9:309-347, 1992.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.1    Herskovits, E.2
  • 6
    • 0033691754 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • N. Friedman, M. Linial, I. Nachman, and D. Peer. Using Bayesian Networks to Analyze Expression Data. In RECOMB, pages 127-135, 2000.
    • (2000) RECOMB , pp. 127-135
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Peer, D.4
  • 7
    • 0000854197 scopus 로고    scopus 로고
    • Learning the structure of dynamic probabilistic networks
    • N. Friedman, K. Murphy, and S. Russell. Learning the Structure of Dynamic Probabilistic Networks. In UAI, pages 139-147, 1998.
    • (1998) UAI , pp. 139-147
    • Friedman, N.1    Murphy, K.2    Russell, S.3
  • 8
    • 0002219642 scopus 로고    scopus 로고
    • Learning Bayesian network structure from massive datasets: The "sparse candidate" algorithm
    • N. Friedman, I. Nachman, and K. Peer. Learning Bayesian Network Structure from Massive Datasets: the "Sparse Candidate" Algorithm. In UAI, pages 206-215, 1999.
    • (1999) UAI , pp. 206-215
    • Friedman, N.1    Nachman, I.2    Peer, K.3
  • 9
    • 0036900861 scopus 로고    scopus 로고
    • Transcriptional regulatory networks and yeast cell cycle
    • B. Futcher. Transcriptional Regulatory Networks and Yeast Cell Cycle. Current Opinion in Cell Biology, 14:676-683, 2002.
    • (2002) Current Opinion in Cell Biology , vol.14 , pp. 676-683
    • Futcher, B.1
  • 10
    • 16244401804 scopus 로고    scopus 로고
    • Using a dynamic Bayesian network to learn genetic interactions
    • L. Gransson and T. Koski. Using a Dynamic Bayesian Network to Learn Genetic Interactions. Technical Report, 2002.
    • (2002) Technical Report
    • Gransson, L.1    Koski, T.2
  • 11
    • 0032612220 scopus 로고    scopus 로고
    • Linear modeling of mRNA expression levels during CNS development and injury
    • P. Haeseleer, X. Wen, S. Fuhrman, and R. Somogyi. Linear Modeling of mRNA Expression Levels During CNS Development and Injury. In PSB, pages 41-52, 1999.
    • (1999) PSB , pp. 41-52
    • Haeseleer, P.1    Wen, X.2    Fuhrman, S.3    Somogyi, R.4
  • 12
    • 0036372453 scopus 로고    scopus 로고
    • Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression
    • S. Imoto, T. Goto, and S. Miyano. Estimation of Genetic Networks and Functional Structures Between Genes by Using Bayesian Networks and Nonparametric Regression. In PSB, volume 7, pages 175-186, 2002.
    • (2002) PSB , vol.7 , pp. 175-186
    • Imoto, S.1    Goto, T.2    Miyano, S.3
  • 13
    • 84960432692 scopus 로고    scopus 로고
    • Combining microarrays and biological knowledge for estimating gene networks via Bayesian network
    • S. Imoto, T. Higuchi, T. Goto, K. Tashiro, S. Kuhara, and S. Miyano. Combining Microarrays and Biological Knowledge for Estimating Gene Networks via Bayesian Network. In CSB, 2003.
    • (2003) CSB
    • Imoto, S.1    Higuchi, T.2    Goto, T.3    Tashiro, K.4    Kuhara, S.5    Miyano, S.6
  • 14
    • 0031616241 scopus 로고    scopus 로고
    • REVEAL, a general reverse engineering algorithm for inference of genetic network architectures
    • S. Liang, S. Fuhrman, and R. Somogyi. REVEAL, a General Reverse Engineering Algorithm for Inference of Genetic Network Architectures. In PSB, volume 3, pages 18-29, 1998.
    • (1998) PSB , vol.3 , pp. 18-29
    • Liang, S.1    Fuhrman, S.2    Somogyi, R.3
  • 15
    • 0004158155 scopus 로고    scopus 로고
    • Modelling gene expression data using dynamic Bayesian networks
    • K. Murphy and S. Mian. Modelling Gene Expression Data Using Dynamic Bayesian Networks. Technical Report, 1999.
    • (1999) Technical Report
    • Murphy, K.1    Mian, S.2
  • 16
    • 0034564415 scopus 로고    scopus 로고
    • Linear modeling of genetic networks from experimental data
    • E. Someren, L. Wessels, and M. Reinders. Linear Modeling of Genetic Networks from Experimental Data. In ISMB, pages 355-366, 2000.
    • (2000) ISMB , pp. 355-366
    • Someren, E.1    Wessels, L.2    Reinders, M.3
  • 17
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization
    • P. Spellman, G. Sherlock, and B. Futcher. Comprehensive Identification of Cell Cycle-Regulated Genes of the Yeast Saccharomyces Cerevisiae by Microarray Hybridization. Molecular Biology of the Cell, 9:3273-3297, 1998.
    • (1998) Molecular Biology of the Cell , vol.9 , pp. 3273-3297
    • Spellman, P.1    Sherlock, G.2    Futcher, B.3
  • 18
    • 0035228396 scopus 로고    scopus 로고
    • A comparison of genetic network models
    • L. Wessels, E. Someren, and M. Reinders. A Comparison of Genetic Network Models. In PSB, volume 6, pages 508-519, 2001.
    • (2001) PSB , vol.6 , pp. 508-519
    • Wessels, L.1    Someren, E.2    Reinders, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.