-
2
-
-
27744557312
-
The asymptotic expected number of Nash equilibria of two player normal form games
-
forthcoming
-
BERG, J., AND A. MCLENNAN (2002): "The Asymptotic Expected Number of Nash Equilibria of Two Player Normal Form Games," Games and Economic Behavior, forthcoming.
-
(2002)
Games and Economic Behavior
-
-
Berg, J.1
Mclennan, A.2
-
3
-
-
0003377844
-
Rationalizable strategic behavior
-
BERNHEIM, B. D. (1984): "Rationalizable Strategic Behavior," Econometrica, 52, 1007-1028.
-
(1984)
Econometrica
, vol.52
, pp. 1007-1028
-
-
Bernheim, B.D.1
-
6
-
-
0010777778
-
Probability of a pure equilibrium point in n-person games
-
DRESHER, M. (1970): "Probability of a Pure Equilibrium Point in n-Person Games," Journal of Combinatorial Theory, 8, 134-145.
-
(1970)
Journal of Combinatorial Theory
, vol.8
, pp. 134-145
-
-
Dresher, M.1
-
8
-
-
0000348667
-
Efficient incremental algorithms for the sparse resultant and the mixed volume
-
EMIRIS, I. Z., AND J. F. CANNY (1995): "Efficient Incremental Algorithms for the Sparse Resultant and the Mixed Volume," Journal of Symbolic Computation, 20, 117-149.
-
(1995)
Journal of Symbolic Computation
, vol.20
, pp. 117-149
-
-
Emiris, I.Z.1
Canny, J.F.2
-
12
-
-
0039637282
-
Mathematical programming and convex geometry
-
ed. by P. M. Gruber and J. M. Wills. New York: North-Holland
-
GRITZMAN, P., AND V. KLEE (1993): "Mathematical Programming and Convex Geometry," in Handbook of Convex Geometry, Vol. A, ed. by P. M. Gruber and J. M. Wills. New York: North-Holland, 627-674.
-
(1993)
Handbook of Convex Geometry
, vol.A
, pp. 627-674
-
-
Gritzman, P.1
Klee, V.2
-
14
-
-
0000986569
-
Oddness of the number of equilibrium points: A new proof
-
HARSANYI, J. C. (1973): "Oddness of the Number of Equilibrium Points: A New Proof," International Journal of Game Theory, 2, 235-250.
-
(1973)
International Journal of Game Theory
, vol.2
, pp. 235-250
-
-
Harsanyi, J.C.1
-
16
-
-
84968520678
-
A polyhedral method for solving sparse polynomial systems
-
HUBER, B., AND B. STURMFELS (1995): "A Polyhedral Method for Solving Sparse Polynomial Systems," Mathematics of Computation, 64, 1541-1555.
-
(1995)
Mathematics of Computation
, vol.64
, pp. 1541-1555
-
-
Huber, B.1
Sturmfels, B.2
-
17
-
-
42549171482
-
On the average number of real roots of a random algebraic equation
-
KAC, M. (1943): "On the Average Number of Real Roots of a Random Algebraic Equation," Bulletin of the American Mathematical Society, 49, 314-320 and 938.
-
(1943)
Bulletin of the American Mathematical Society
, vol.49
, pp. 314-320
-
-
Kac, M.1
-
18
-
-
0031256798
-
On the maximal number of Nash equilibria in a bimatrix game
-
KEIDING, H. (1995): "On the Maximal Number of Nash Equilibria in a Bimatrix Game," Games and Economic Behavior, 21, 148-160.
-
(1995)
Games and Economic Behavior
, vol.21
, pp. 148-160
-
-
Keiding, H.1
-
20
-
-
0000292804
-
On the strategic stability of equilibria
-
KOHLBERG, E., AND J.-F. MERTENS (1986): "On the Strategic Stability of Equilibria," Econometrica, 54, 1003-1038.
-
(1986)
Econometrica
, vol.54
, pp. 1003-1038
-
-
Kohlberg, E.1
Mertens, J.-F.2
-
21
-
-
0009877344
-
On the distribution of roots of random polynomials
-
ed. by M. Hirsch, J. Marsden, and M. Snub. New York: Springer-Verlag
-
KOSTLAN, E. (1993): "On the Distribution of Roots of Random Polynomials," in From Topology to Computation; Proceedings of the Smalefest, ed. by M. Hirsch, J. Marsden, and M. Snub. New York: Springer-Verlag, 419-431.
-
(1993)
From Topology to Computation; Proceedings of the Smalefest
, pp. 419-431
-
-
Kostlan, E.1
-
22
-
-
27844464014
-
On the expected number of real roots of a system of random polynomial equations
-
ed. by F. Cucker and M. Rojas. River Edge, NJ: World Scientific
-
_ (2002): "On the Expected Number of Real Roots of a System of Random Polynomial Equations," in Foundations of Computational Mathematics: Proceedings of the Smalefest 2000, ed. by F. Cucker and M. Rojas. River Edge, NJ: World Scientific, 149-188.
-
(2002)
Foundations of Computational Mathematics: Proceedings of the Smalefest 2000
, pp. 149-188
-
-
-
23
-
-
0347806375
-
The work of John Nash in game theory: Nobel seminar, December 8, 1994
-
KUHN, H., J. C. HARSANYI, R. SELTEN, J. WEIBULL, E. VAN DAMME, AND J. F. NASH, JR. (1996): "The Work of John Nash in Game Theory: Nobel Seminar, December 8, 1994," Journal of Economic Theory, 69, 153-185.
-
(1996)
Journal of Economic Theory
, vol.69
, pp. 153-185
-
-
Kuhn, H.1
Harsanyi, J.C.2
Selten, R.3
Weibull, J.4
Van Damme, E.5
Nash Jr., J.F.6
-
24
-
-
0031065971
-
The maximal number of regular totally mixed Nash equilibria
-
MCKELVEY, R. D., AND A. MCLENNAN (1997): "The Maximal Number of Regular Totally Mixed Nash Equilibria," Journal of Economic Theory, 72, 411-425.
-
(1997)
Journal of Economic Theory
, vol.72
, pp. 411-425
-
-
Mckelvey, R.D.1
Mclennan, A.2
-
25
-
-
0031065973
-
The maximal generic number of pure Nash equilibria
-
MCLENNAN, A. (1997): "The Maximal Generic Number of Pure Nash Equilibria," Journal of Economic Theory, 72, 408-410.
-
(1997)
Journal of Economic Theory
, vol.72
, pp. 408-410
-
-
Mclennan, A.1
-
26
-
-
0009847775
-
The maximal number of real roots of a multihomogeneous system of polynomial equations
-
_ (1999): "The Maximal Number of Real Roots of a Multihomogeneous System of Polynomial Equations," Beiträge zur Algebra und Geometrie, 40, 343-350.
-
(1999)
Beiträge zur Algebra und Geometrie
, vol.40
, pp. 343-350
-
-
-
27
-
-
0036324756
-
The expected number of real roots of a multihomogeneous system of polynomial equations
-
_ (2002): "The Expected Number of Real Roots of a Multihomogeneous System of Polynomial Equations," American Journal of Mathematics, 124, 49-73.
-
(2002)
American Journal of Mathematics
, vol.124
, pp. 49-73
-
-
-
28
-
-
27744510760
-
Supplement to the expected number of Nash equilibria of a normal form game'
-
_ (2004): "Supplement to The Expected Number of Nash Equilibria of a Normal Form Game'," Econometrica Supplementary Material, http://www.econometricsociety.org/ecta/supmat/1712illustration.pdf.
-
(2004)
Econometrica Supplementary Material
-
-
-
29
-
-
0042204039
-
Generic 4×4 games have at most 15 Nash equilibria
-
MCLENNAN, A., AND I.-U. PARK (1999): "Generic 4×4 Games Have at Most 15 Nash Equilibria," Games and Economic Behavior, 26, 111-130.
-
(1999)
Games and Economic Behavior
, vol.26
, pp. 111-130
-
-
Mclennan, A.1
Park, I.-U.2
-
30
-
-
0003986162
-
-
Annals of Mathematics Studies. Princeton: Princeton University Press
-
MILNOR, J. W., AND J. D. STASHEFF (1974): Characteristic Classes, Annals of Mathematics Studies 76. Princeton: Princeton University Press.
-
(1974)
Characteristic Classes
, vol.76
-
-
Milnor, J.W.1
Stasheff, J.D.2
-
31
-
-
0000319051
-
Rationalizable strategic behavior and the problem of perfection
-
PEARCE, D. G. (1984): "Rationalizable Strategic Behavior and the Problem of Perfection," Econometrica, 52, 1029-1050.
-
(1984)
Econometrica
, vol.52
, pp. 1029-1050
-
-
Pearce, D.G.1
-
32
-
-
0010781233
-
Limiting distributions of the number of pure strategy Nash equilibria
-
POWERS, I. (1990): "Limiting Distributions of the Number of Pure Strategy Nash Equilibria," International Journal of Game Theory, 19, 277-286.
-
(1990)
International Journal of Game Theory
, vol.19
, pp. 277-286
-
-
Powers, I.1
-
33
-
-
0040747444
-
A theorem on the number of Nash equilibria in a bimatrix game
-
QUINT, T., AND M. SHUBIK (1997): "A Theorem on the Number of Nash Equilibria in a Bimatrix Game," International Journal of Game Theory, 26, 353-360.
-
(1997)
International Journal of Game Theory
, vol.26
, pp. 353-360
-
-
Quint, T.1
Shubik, M.2
-
34
-
-
0009844162
-
On the average number of real roots of certain random sparse polynomial systems
-
ed. by J. Renegar, M. Shub, and S. Smale. Providence, RI: American Mathematical Society
-
ROJAS, J. M. (1996): "On the Average Number of Real Roots of Certain Random Sparse Polynomial Systems," in Lectures on Applied Mathematics Series, ed. by J. Renegar, M. Shub, and S. Smale. Providence, RI: American Mathematical Society, 689-699.
-
(1996)
Lectures on Applied Mathematics Series
, pp. 689-699
-
-
Rojas, J.M.1
-
37
-
-
0000537756
-
Complexity of Bezout's theorem II: Volumes and probabilities
-
ed. by F. Eyssette and A. Galligo. Boston: Birkhauser
-
SHUB, M., AND S. SMALE (1993): "Complexity of Bezout's Theorem II: Volumes and Probabilities," in Computational Algebraic Geometry, Progress in Mathematics, Vol. 109, ed. by F. Eyssette and A. Galligo. Boston: Birkhauser, 267-285.
-
(1993)
Computational Algebraic Geometry, Progress in Mathematics
, vol.109
, pp. 267-285
-
-
Shub, M.1
Smale, S.2
-
38
-
-
0010847432
-
A note on the probability of k pure Nash equilibria in matrix games
-
STANFORD, W. (1995): "A Note on the Probability of k Pure Nash Equilibria in Matrix Games," Games and Economic Behavior, 9, 238-246.
-
(1995)
Games and Economic Behavior
, vol.9
, pp. 238-246
-
-
Stanford, W.1
-
40
-
-
0028449799
-
Homotopies exploiting Newton polytopes for solving sparse polynomial systems
-
VERSCHELDE, J., P. VERLINDEN, AND R. COOLS (1994): "Homotopies Exploiting Newton Polytopes for Solving Sparse Polynomial Systems," SIAM Journal of Numerical Analysis, 31, 915-930.
-
(1994)
SIAM Journal of Numerical Analysis
, vol.31
, pp. 915-930
-
-
Verschelde, J.1
Verlinden, P.2
Cools, R.3
-
41
-
-
0033463683
-
New maximal numbers of equilibria in bimatrix games
-
VON STENGEL, B. (1999): "New Maximal Numbers of Equilibria in Bimatrix Games," Discrete and Computational Geometry, 21, 557-568.
-
(1999)
Discrete and Computational Geometry
, vol.21
, pp. 557-568
-
-
Von Stengel, B.1
|