메뉴 건너뛰기




Volumn 26, Issue 1, 1999, Pages 111-130

Generic 4 × 4 Two Person Games Have at Most 15 Nash Equilibria

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0042204039     PISSN: 08998256     EISSN: None     Source Type: Journal    
DOI: 10.1006/game.1998.0640     Document Type: Article
Times cited : (21)

References (14)
  • 1
    • 0010777778 scopus 로고
    • Probability of a Pure Equilibrium Point inn
    • Dresher M. Probability of a Pure Equilibrium Point inn. J. Combin. Theory. 8:1970;134-145.
    • (1970) J. Combin. Theory , vol.8 , pp. 134-145
    • Dresher, M.1
  • 2
    • 0002643458 scopus 로고
    • A Bound on the Proportion of Pure Strategy Equilibria in Generic Games
    • Gul F., Pearce D., Stachetti E. A Bound on the Proportion of Pure Strategy Equilibria in Generic Games. Math. Oper. Res. 18:1993;548-552.
    • (1993) Math. Oper. Res. , vol.18 , pp. 548-552
    • Gul, F.1    Pearce, D.2    Stachetti, E.3
  • 3
    • 0000855623 scopus 로고
    • An Enumeration of Simplicial 4-Polytopes with 8 Vertices
    • Grünbaum B., Sreedharan V. P. An Enumeration of Simplicial 4-Polytopes with 8 Vertices. J. Combin. Theory. 2:1967;437-465.
    • (1967) J. Combin. Theory , vol.2 , pp. 437-465
    • Grünbaum, B.1    Sreedharan, V.P.2
  • 4
    • 0000986569 scopus 로고
    • Oddness of the Number of Equilibrium Points: A New Proof
    • Harsanyi J. C. Oddness of the Number of Equilibrium Points: A New Proof. Internat. J. Game Theory. 2:1973;232-250.
    • (1973) Internat. J. Game Theory , vol.2 , pp. 232-250
    • Harsanyi, J.C.1
  • 5
    • 0031256798 scopus 로고    scopus 로고
    • On the Maximal Number of Nash Equilibria in a Bimatrix Game
    • Keiding H. On the Maximal Number of Nash Equilibria in a Bimatrix Game. Games Econ. Behav. 21:1997;148-160.
    • (1997) Games Econ. Behav. , vol.21 , pp. 148-160
    • Keiding, H.1
  • 6
    • 0031065971 scopus 로고    scopus 로고
    • The Maximal Number of Regular Totally Mixed Nash Equilibria
    • McKelvey R. D., McLennan A. The Maximal Number of Regular Totally Mixed Nash Equilibria. J. Econ. Theory. 72:1997;411-425.
    • (1997) J. Econ. Theory , vol.72 , pp. 411-425
    • McKelvey, R.D.1    McLennan, A.2
  • 7
    • 0031065973 scopus 로고    scopus 로고
    • The Maximal Generic Number of Pure Nash Equilibria
    • McLennan A. The Maximal Generic Number of Pure Nash Equilibria. J. Econ. Theory. 72:1997;408-410.
    • (1997) J. Econ. Theory , vol.72 , pp. 408-410
    • McLennan, A.1
  • 8
    • 0010781233 scopus 로고
    • Limiting Distributions of the Number of Pure Strategy Nash Equilibria
    • Powers I. Limiting Distributions of the Number of Pure Strategy Nash Equilibria. Internat. J. Game Theory. 19:1990;277-286.
    • (1990) Internat. J. Game Theory , vol.19 , pp. 277-286
    • Powers, I.1
  • 9
    • 0040747444 scopus 로고    scopus 로고
    • A Theorem on the Number of Nash Equilibria in a Bimatrix Game
    • Quint T., Shubik M. A Theorem on the Number of Nash Equilibria in a Bimatrix Game. Internat. J. Game Theory. 26:1997;353-360.
    • (1997) Internat. J. Game Theory , vol.26 , pp. 353-360
    • Quint, T.1    Shubik, M.2
  • 10
    • 0000183805 scopus 로고
    • A Note on the Lemke-Howson Algorithm
    • Shapley L. A Note on the Lemke-Howson Algorithm. Math. Programming Stud. 1:1974;175-189.
    • (1974) Math. Programming Stud. , vol.1 , pp. 175-189
    • Shapley, L.1
  • 11
    • 0030204918 scopus 로고
    • The Limit Distribution of Pure Equilibria in Symmetric Bimatrix Games
    • Stanford W. The Limit Distribution of Pure Equilibria in Symmetric Bimatrix Games. Math. Oper. Res. 21:1994;726-733.
    • (1994) Math. Oper. Res. , vol.21 , pp. 726-733
    • Stanford, W.1
  • 12
    • 0010847432 scopus 로고
    • A Note on the Probability ofk
    • Stanford W. A Note on the Probability ofk. Games Econ. Behavior. 9:1995;238-246.
    • (1995) Games Econ. Behavior , vol.9 , pp. 238-246
    • Stanford, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.