-
3
-
-
0000854229
-
-
L. Gavioli, K. R. Kimberlin, M. C. Tringides, J. F. Wendelken, and Z. Zhang, Phys. Rev. Lett. 82, 129 (1999).
-
(1999)
Phys. Rev. Lett.
, vol.82
, pp. 129
-
-
Gavioli, L.1
Kimberlin, K.R.2
Tringides, M.C.3
Wendelken, J.F.4
Zhang, Z.5
-
4
-
-
0000037781
-
-
A. S. Cordan, Y. Leroy, A. Goltzene, A. Pepin, C. Vieu, M. Mejias, and H. Launois, J. Appl. Phys. 87, 345 (2000).
-
(2000)
J. Appl. Phys.
, vol.87
, pp. 345
-
-
Cordan, A.S.1
Leroy, Y.2
Goltzene, A.3
Pepin, A.4
Vieu, C.5
Mejias, M.6
Launois, H.7
-
5
-
-
0037057572
-
-
C.-S. Jiang, H. Yu, C.-K. Shih, and Ph. Ebert, Surf. Sci. 518, 63 (2002).
-
(2002)
Surf. Sci.
, vol.518
, pp. 63
-
-
Jiang, C.-S.1
Yu, H.2
Shih, C.-K.3
Ebert, Ph.4
-
6
-
-
21444455259
-
-
S. Aggarwal, S. B. Ogale, C. S. Ganlule, S. R. Shinde, V. A. Novikov, A. P. Monga, M. R. Burr, R. Ramesh, V. Ballarotto, and E. D. Williams, Appl. Phys. Lett. 78, 1443 (2001).
-
(2001)
Appl. Phys. Lett.
, vol.78
, pp. 1443
-
-
Aggarwal, S.1
Ogale, S.B.2
Ganlule, C.S.3
Shinde, S.R.4
Novikov, V.A.5
Monga, A.P.6
Burr, M.R.7
Ramesh, R.8
Ballarotto, V.9
Williams, E.D.10
-
7
-
-
0141453174
-
-
R. Schuster, D. Thron, M. Binetti, X. Xia, and G. Ertl, Phys. Rev. Lett. 91, 066101 (2003).
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 066101
-
-
Schuster, R.1
Thron, D.2
Binetti, M.3
Xia, X.4
Ertl, G.5
-
8
-
-
1642587321
-
-
S. Lombardo, B. De Salvo, C. Gerardi, and T. Baron, Microelectron. Eng. 72, 388. (2004)
-
(2004)
Microelectron. Eng.
, vol.72
, pp. 388
-
-
Lombardo, S.1
De Salvo, B.2
Gerardi, C.3
Baron, T.4
-
12
-
-
0000719031
-
-
K.-H. Park, J. S. Ha, W. S. Yun, M. Shin, and K.-W. Park, Appl. Phys. Lett. 71, 1469 (1997).
-
(1997)
Appl. Phys. Lett.
, vol.71
, pp. 1469
-
-
Park, K.-H.1
Ha, J.S.2
Yun, W.S.3
Shin, M.4
Park, K.-W.5
-
14
-
-
0035920644
-
-
T. Baron, P. Gentile, N. Marnea, and P. Mur, Appl. Phys. Lett. 79, 1175 (2001).
-
(2001)
Appl. Phys. Lett.
, vol.79
, pp. 1175
-
-
Baron, T.1
Gentile, P.2
Marnea, N.3
Mur, P.4
-
16
-
-
0035934202
-
-
H. Portales, L. Saviot, E. Duval, M. Fujii, S. Hayashi, N. Del Fatti, and F. Valĺe, J. Chem. Phys. 115, 3444 (2001).
-
(2001)
J. Chem. Phys.
, vol.115
, pp. 3444
-
-
Portales, H.1
Saviot, L.2
Duval, E.3
Fujii, M.4
Hayashi, S.5
Del Fatti, N.6
Valĺe, F.7
-
17
-
-
0347477183
-
-
H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, Appl. Phys. Lett. 83, 4625 (2003).
-
(2003)
Appl. Phys. Lett.
, vol.83
, pp. 4625
-
-
Kuwata, H.1
Tamaru, H.2
Esumi, K.3
Miyano, K.4
-
18
-
-
0034299657
-
-
D. K. Sakar, S. Dhara, K. G. M. Nair, and S. Chowdhury, Nucl. Instrum. Methods Phys. Res. B 170, 413 (2000).
-
(2000)
Nucl. Instrum. Methods Phys. Res. B
, vol.170
, pp. 413
-
-
Sakar, D.K.1
Dhara, S.2
Nair, K.G.M.3
Chowdhury, S.4
-
20
-
-
0032115299
-
-
D. K. Sarkar, S. Bera, S. V. Narasimhan, S. Chowdhury, A. Gupta, and K. G. M. Nair, Solid State Commun. 107, 413 (1998).
-
(1998)
Solid State Commun.
, vol.107
, pp. 413
-
-
Sarkar, D.K.1
Bera, S.2
Narasimhan, S.V.3
Chowdhury, S.4
Gupta, A.5
Nair, K.G.M.6
-
21
-
-
0033742926
-
-
D. K. Sarkar, S. Dhara, K. G. M. Nair, and S. Chowdhury, Nucl. Instrum. Methods Phys. Res. B 168, 215 (2000).
-
(2000)
Nucl. Instrum. Methods Phys. Res. B
, vol.168
, pp. 215
-
-
Sarkar, D.K.1
Dhara, S.2
Nair, K.G.M.3
Chowdhury, S.4
-
22
-
-
0033692027
-
-
J. Erlebacher, M. Aziz, E. Chason, M. B. Sinclair, and J. A. Florro, J. Vac. Sci. Technol. A 18, 115 (2000).
-
(2000)
J. Vac. Sci. Technol. A
, vol.18
, pp. 115
-
-
Erlebacher, J.1
Aziz, M.2
Chason, E.3
Sinclair, M.B.4
Florro, J.A.5
-
25
-
-
0141564900
-
-
T. Bobek, S. Facsko, H. Kurz, T. Dekorsy, M. Xu, and C. Teichert, Phys. Rev. B 68, 085324 (2003).
-
(2003)
Phys. Rev. B
, vol.68
, pp. 085324
-
-
Bobek, T.1
Facsko, S.2
Kurz, H.3
Dekorsy, T.4
Xu, M.5
Teichert, C.6
-
30
-
-
21444448306
-
-
note
-
The interatomic distances for Si, Cu, and Ag are 0.24, 0.26, and 0.29 nm, respectively. Assuming the average as a reasonable estimate for the size of interface lattice cells, we obtain the average cell size a=0.25 nm for the Cu/Si interface and a=0.26 nm for the Ag/Si interface. Thus, the 400 ×400 lattice represents a 100 nm×100 nm surface fragment for the Cu/Si interface and a 105 nm×105 nm surface fragment for the Ag/Si interface
-
-
-
-
36
-
-
21444439654
-
-
note
-
We have extracted the bond energy from the calculated free-step energy of Cu and Ag terraces that is close to 0.15 eV (see Ref. 31). With eightfold lateral coordination adopted in our simulation, one atom at a terrace step has three unsaturated lateral bonds and therefore the energy of one bond is approximately 0.05 eV
-
-
-
-
37
-
-
0035124458
-
-
J. Mysliveč;ek, P. Sobotík, I. Oš;t'ádal, T. Jarolímek, and P. Š;milauer, Phys. Rev. B 63, 045403 (2001).
-
(2001)
Phys. Rev. B
, vol.63
, pp. 045403
-
-
Mysliveč1
Ek, J.2
Sobotík, P.3
Oš4
t'Ádal, I.5
Jarolímek, T.6
Š7
milauer, P.8
-
39
-
-
3543060587
-
-
St. Tosch and H. Neddermeyer, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.61.349 61, 349 (1988); St. Tosch and H. Neddermeyer, J. Microsc. 152, 415 (1988).
-
(1988)
Phys. Rev. Lett.
, vol.61
, pp. 349
-
-
Tosch, St.1
Neddermeyer, H.2
-
40
-
-
84927444420
-
-
St. Tosch and H. Neddermeyer, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.61.349 61, 349 (1988); St. Tosch and H. Neddermeyer, J. Microsc. 152, 415 (1988).
-
(1988)
J. Microsc.
, vol.152
, pp. 415
-
-
Tosch, St.1
Neddermeyer, H.2
-
41
-
-
21444458961
-
-
note
-
For 50% coverage, we define the average feature size as the position of the first minimum of the correlation function C(r , s)=∑(h(x, y)-h̄)(h(x+r , y+s)-h̄), where h=1 for metal and h=0 for uncovered substrate. For coverage below 50%, we estimate the size by λ=k σ/ p with the empiric coefficient k=2.4 chosen such to fit the minimum of the correlation function as the coverage approaches 50% (σ is the total coverage and p is the total perimeter)
-
-
-
-
47
-
-
21444450714
-
-
note
-
0 considering the definition of size in this work (see Ref. 40)
-
-
-
-
51
-
-
36549099163
-
-
S. H. Chou, A. J. Freeman, S. Grigoras, T. M. Gentle, B. Delley, and E. Wimmer, J. Chem. Phys. 89, 5177 (1988).
-
(1988)
J. Chem. Phys.
, vol.89
, pp. 5177
-
-
Chou, S.H.1
Freeman, A.J.2
Grigoras, S.3
Gentle, T.M.4
Delley, B.5
Wimmer, E.6
-
53
-
-
0004551670
-
-
M. E. Day, M. Delfinio, W. Tsai, A. Bivas, and K. N. Ritz, J. Appl. Phys. 74, 5217 (1993).
-
(1993)
J. Appl. Phys.
, vol.74
, pp. 5217
-
-
Day, M.E.1
Delfinio, M.2
Tsai, W.3
Bivas, A.4
Ritz, K.N.5
-
54
-
-
21444457765
-
-
note
-
The pre-exponential factors for adatom diffusivity depend on the adatom vibrational frequency and bond geometry (see Ref. 31). The vibrational frequency is of the same order of magnitude for most materials, and the geometry of bonds is similar for Cu and Ag. Thus, similar preexponential factors is an acceptable assumption to evaluate DsCud /DsAgd to the order of magnitude
-
-
-
-
57
-
-
21444434003
-
-
note
-
0 is the initial (room) temperature, q is the energy flux through the surface due to the incoming ions, K is the thermal conductivity, Σ is the density, c is the specific heat, and t is time
-
-
-
-
59
-
-
0036722105
-
-
L. Chen, Y. Zeng, P. Nyugen, and T. L. Alford, Mater. Chem. Phys. 76, 224 (2002).
-
(2002)
Mater. Chem. Phys.
, vol.76
, pp. 224
-
-
Chen, L.1
Zeng, Y.2
Nyugen, P.3
Alford, T.L.4
|