-
1
-
-
2942668437
-
-
0021-8979 10.1063/1.1710729
-
See, e.g., R. J. Chesterfield, J. C. McKeen, C. R. Newman, C. D. Frisbie, P. C. Ewbank, K. R. Mann, and L. L. Miller, J. Appl. Phys. 0021-8979 10.1063/1.1710729 95, 6396 (2004)
-
(2004)
J. Appl. Phys.
, vol.95
, pp. 6396
-
-
Chesterfield, R.J.1
McKeen, J.C.2
Newman, C.R.3
Frisbie, C.D.4
Ewbank, P.C.5
Mann, K.R.6
Miller, L.L.7
-
2
-
-
18744383136
-
-
0021-8979 10.1063/1.1511826
-
H. Klauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik, and W. Weber, J. Appl. Phys. 0021-8979 10.1063/1.1511826 92, 5259 (2002)
-
(2002)
J. Appl. Phys.
, vol.92
, pp. 5259
-
-
Klauk, H.1
Halik, M.2
Zschieschang, U.3
Schmid, G.4
Radlik, W.5
Weber, W.6
-
3
-
-
0000686239
-
-
and references therein
-
S. F. Nelson, Y.-Y. Lin, D. J. Gundlach, and T. N. Jackson, Appl. Phys. Lett. 72, 1854 (1998), and references therein.
-
(1998)
Appl. Phys. Lett.
, vol.72
, pp. 1854
-
-
Nelson, S.F.1
Lin, Y.-Y.2
Gundlach, D.J.3
Jackson, T.N.4
-
7
-
-
0242666862
-
-
V. Podzorov, S. E. Sysoev, E. Loginova, V. M. Pudalov, and M. E. Gershenson, Appl. Phys. Lett. 83, 3504 (2003).
-
(2003)
Appl. Phys. Lett.
, vol.83
, pp. 3504
-
-
Podzorov, V.1
Sysoev, S.E.2
Loginova, E.3
Pudalov, V.M.4
Gershenson, M.E.5
-
9
-
-
0242552083
-
-
J. Takeya, C. Goldmann, S. Haas, K. P. Pernstich, B. Ketterer, and B. Batlogg, J. Appl. Phys. 94, 5800 (2003).
-
(2003)
J. Appl. Phys.
, vol.94
, pp. 5800
-
-
Takeya, J.1
Goldmann, C.2
Haas, S.3
Pernstich, K.P.4
Ketterer, B.5
Batlogg, B.6
-
10
-
-
0346306371
-
-
V. Y. Butko, X. Chi, D. V. Lang, and A. P. Ramirez, Appl. Phys. Lett. 83, 4773 (2003).
-
(2003)
Appl. Phys. Lett.
, vol.83
, pp. 4773
-
-
Butko, V.Y.1
Chi, X.2
Lang, D.V.3
Ramirez, A.P.4
-
11
-
-
2942607403
-
-
R. W. I. de Boer, M. E. Gershenson, A. F. Morpurgo, and V. Podzorov, Phys. Status Solidi A 201, 1302 (2004).
-
(2004)
Phys. Status Solidi A
, vol.201
, pp. 1302
-
-
De Boer, R.W.I.1
Gershenson, M.E.2
Morpurgo, A.F.3
Podzorov, V.4
-
12
-
-
0031549963
-
-
C. Kloc, P. G. Simpkins, T. Siegrist, and R. A. Laudise, J. Cryst. Growth 182, 416 (1997).
-
(1997)
J. Cryst. Growth
, vol.182
, pp. 416
-
-
Kloc, C.1
Simpkins, P.G.2
Siegrist, T.3
Laudise, R.A.4
-
15
-
-
2342639588
-
-
S. Kobayashi, T. Nishikawa, T. Takenobu, S. Mori, T. Shimoda, T. Mitani, H. Shimotani, N. Yoshimoto, S. Ogawa, and Y. Iwasa, Nat. Mater. 3, 317 (2004).
-
(2004)
Nat. Mater.
, vol.3
, pp. 317
-
-
Kobayashi, S.1
Nishikawa, T.2
Takenobu, T.3
Mori, S.4
Shimoda, T.5
Mitani, T.6
Shimotani, H.7
Yoshimoto, N.8
Ogawa, S.9
Iwasa, Y.10
-
16
-
-
20444467431
-
-
note
-
In the studied devices, the front gate is absent-thus, the conduction channel cannot be electrostatically induced at positive Vs due to the mirror charge effect.
-
-
-
-
17
-
-
20444497081
-
-
note
-
The surface character of this conductivity can be demonstrated using the front-gate electrode mechanically laminated against the free-standing rubrene crystals with contacts. We used a 2-μm-thick aluminized Mylar film that served as a gate, and we measured ISD before and after attaching it to the surface of the crystal. Drastic reduction of the conductivity with application of a positive front-gate voltage signifies the depletion of the built-in channel and suggests that the built-in conduction is restricted to the surface of the crystal.
-
-
-
-
19
-
-
0037859959
-
-
V. Nardello, M.-J. Marti, C. Pierlot, and J.-M. Aubry, J. Chem. Educ. 76, 1285 (1999).
-
(1999)
J. Chem. Educ.
, vol.76
, pp. 1285
-
-
Nardello, V.1
Marti, M.-J.2
Pierlot, C.3
Aubry, J.-M.4
-
21
-
-
20444497470
-
-
note
-
In this experiment, the front facet of the crystal with the source and drain contacts is illuminated with a quartz-tungsten-halogen bulb with a broad spectrum and the light intensity at the sample surface ∼10 mW cm2. Heating during illumination is minimized by positioning the light source far from the sample (50 cm). Short illumination times and very fast response of the device exclude any possibility of the thermal origin of the observed switching effect.
-
-
-
|