-
2
-
-
0036903361
-
Modelling 'evo-devo' with RNA
-
Fontana W. Modelling 'evo-devo' with RNA. Bioessays. 24:2002;1164-1177.
-
(2002)
Bioessays
, vol.24
, pp. 1164-1177
-
-
Fontana, W.1
-
3
-
-
0033770580
-
Rational evolutionary design: The theory of in vitro protein evolution
-
Voigt C.A., Kauffman S., Wang Z.G. Rational evolutionary design: the theory of in vitro protein evolution. Adv Protein Chem. 55:2000;79-160.
-
(2000)
Adv Protein Chem
, vol.55
, pp. 79-160
-
-
Voigt, C.A.1
Kauffman, S.2
Wang, Z.G.3
-
4
-
-
0035843136
-
Combinatorial and computational challenges for biocatalyst design
-
Arnold F.H. Combinatorial and computational challenges for biocatalyst design. Nature. 409:2001;253-257.
-
(2001)
Nature
, vol.409
, pp. 253-257
-
-
Arnold, F.H.1
-
5
-
-
0023449962
-
Spin glasses and the statistical mechanics of protein folding
-
Bryngelson J.D., Wolynes P.G. Spin glasses and the statistical mechanics of protein folding. Proc Natl Acad Sci USA. 84:1987;7524-7528.
-
(1987)
Proc Natl Acad Sci USA
, vol.84
, pp. 7524-7528
-
-
Bryngelson, J.D.1
Wolynes, P.G.2
-
6
-
-
0028929556
-
Principles of protein folding - A perspective from simple exact models
-
Dill K.A., Bromberg S., Yue K., Fiebig K.M., Yee D.P., Thomas P.D., Chan H.S. Principles of protein folding - a perspective from simple exact models. Protein Sci. 4:1995;561-602.
-
(1995)
Protein Sci
, vol.4
, pp. 561-602
-
-
Dill, K.A.1
Bromberg, S.2
Yue, K.3
Fiebig, K.M.4
Yee, D.P.5
Thomas, P.D.6
Chan, H.S.7
-
7
-
-
0031059496
-
Theoretical studies of protein-folding thermodynamics and kinetics
-
Shakhnovich E.I. Theoretical studies of protein-folding thermodynamics and kinetics. Curr Opin Struct Biol. 7:1997;29-40.
-
(1997)
Curr Opin Struct Biol
, vol.7
, pp. 29-40
-
-
Shakhnovich, E.I.1
-
8
-
-
0013527261
-
Perspectives on protein evolution from simple exact models
-
An in-depth and comprehensive review of the use of simple exact models to study protein evolution.
-
Chan H.S., Bornberg-Bauer E. Perspectives on protein evolution from simple exact models. Appl Bioinformatics. 1:2002;121-144 An in-depth and comprehensive review of the use of simple exact models to study protein evolution.
-
(2002)
Appl Bioinformatics
, vol.1
, pp. 121-144
-
-
Chan, H.S.1
Bornberg-Bauer, E.2
-
9
-
-
0030782481
-
How are model protein structures distributed in sequence space?
-
Bornberg-Bauer E. How are model protein structures distributed in sequence space? Biophys J. 73:1997;2393-2403.
-
(1997)
Biophys J
, vol.73
, pp. 2393-2403
-
-
Bornberg-Bauer, E.1
-
10
-
-
13044269058
-
Modeling evolutionary landscapes: Mutational stability, topology, and superfunnels in sequence space
-
Bornberg-Bauer E., Chan H.S. Modeling evolutionary landscapes: mutational stability, topology, and superfunnels in sequence space. Proc Natl Acad Sci USA. 96:1999;10689-10694.
-
(1999)
Proc Natl Acad Sci USA
, vol.96
, pp. 10689-10694
-
-
Bornberg-Bauer, E.1
Chan, H.S.2
-
11
-
-
1442324641
-
Funnel-like organization in sequence space determines the distributions of protein stability and folding rate preferred by evolution
-
Using a two-dimensional HP-like model, the authors calculated the stability and folding rate of all sequences that fold to the same 24-mer structure. It was found that the distributions of stability and folding rate in sequence space are different, but both distributions are funnel like. The existence of stability and folding rate funnels in sequence space limits the range of possible dynamic behavior of protein evolution.
-
Xia Y., Levitt M. Funnel-like organization in sequence space determines the distributions of protein stability and folding rate preferred by evolution. Proteins. 55:2004;107-114 Using a two-dimensional HP-like model, the authors calculated the stability and folding rate of all sequences that fold to the same 24-mer structure. It was found that the distributions of stability and folding rate in sequence space are different, but both distributions are funnel like. The existence of stability and folding rate funnels in sequence space limits the range of possible dynamic behavior of protein evolution.
-
(2004)
Proteins
, vol.55
, pp. 107-114
-
-
Xia, Y.1
Levitt, M.2
-
12
-
-
0036340797
-
Randomness, structural uniqueness, modularity, and neutral evolution in sequence space of model proteins
-
Bornberg-Bauer E. Randomness, structural uniqueness, modularity, and neutral evolution in sequence space of model proteins. Z Phys Chem. 216:2002;139-154.
-
(2002)
Z Phys Chem
, vol.216
, pp. 139-154
-
-
Bornberg-Bauer, E.1
-
13
-
-
0037154157
-
Recombinatoric exploration of novel folded structures: A heteropolymer-based model of protein evolutionary landscapes
-
Cui Y., Wong W.H., Bornberg-Bauer E., Chan H.S. Recombinatoric exploration of novel folded structures: a heteropolymer-based model of protein evolutionary landscapes. Proc Natl Acad Sci USA. 99:2002;809-814.
-
(2002)
Proc Natl Acad Sci USA
, vol.99
, pp. 809-814
-
-
Cui, Y.1
Wong, W.H.2
Bornberg-Bauer, E.3
Chan, H.S.4
-
14
-
-
0035783063
-
Fold change in evolution of protein structures
-
Grishin N.V. Fold change in evolution of protein structures. J Struct Biol. 134:2001;167-185.
-
(2001)
J Struct Biol
, vol.134
, pp. 167-185
-
-
Grishin, N.V.1
-
15
-
-
0029772552
-
Emergence of preferred structures in a simple model of protein folding
-
Li H., Helling R., Tang C., Wingreen N. Emergence of preferred structures in a simple model of protein folding. Science. 273:1996;666-669.
-
(1996)
Science
, vol.273
, pp. 666-669
-
-
Li, H.1
Helling, R.2
Tang, C.3
Wingreen, N.4
-
16
-
-
0034322834
-
Symmetry and designability for lattice protein models
-
Wang T., Miller J., Wingreen N.S., Tang C., Dill K.A. Symmetry and designability for lattice protein models. J Chem Phys. 113:2000;8329-8336.
-
(2000)
J Chem Phys
, vol.113
, pp. 8329-8336
-
-
Wang, T.1
Miller, J.2
Wingreen, N.S.3
Tang, C.4
Dill, K.A.5
-
17
-
-
0000713579
-
Designability, thermodynamic stability, and dynamics in protein folding: A lattice model study
-
Melin R., Li H., Wingreen N., Tang C. Designability, thermodynamic stability, and dynamics in protein folding: a lattice model study. J Chem Phys. 110:1999;1252-1262.
-
(1999)
J Chem Phys
, vol.110
, pp. 1252-1262
-
-
Melin, R.1
Li, H.2
Wingreen, N.3
Tang, C.4
-
19
-
-
0001544150
-
Surveying determinants of protein structure designability across different energy models and amino-acid alphabets: A consensus
-
Buchler N.E.G., Goldstein R.A. Surveying determinants of protein structure designability across different energy models and amino-acid alphabets: a consensus. J Chem Phys. 112:2000;2533-2547.
-
(2000)
J Chem Phys
, vol.112
, pp. 2533-2547
-
-
Buchler, N.E.G.1
Goldstein, R.A.2
-
20
-
-
0037110580
-
Designability of protein structures: A lattice-model study using the Miyazawa-Jernigan matrix
-
Li H., Tang C., Wingreen N.S. Designability of protein structures: a lattice-model study using the Miyazawa-Jernigan matrix. Proteins. 49:2002;403-412.
-
(2002)
Proteins
, vol.49
, pp. 403-412
-
-
Li, H.1
Tang, C.2
Wingreen, N.S.3
-
21
-
-
0035005949
-
The designability of protein structures
-
Helling R., Li H., Melin R., Miller J., Wingreen N., Zeng C., Tang C. The designability of protein structures. J Mol Graph Model. 19:2001;157-167.
-
(2001)
J Mol Graph Model
, vol.19
, pp. 157-167
-
-
Helling, R.1
Li, H.2
Melin, R.3
Miller, J.4
Wingreen, N.5
Zeng, C.6
Tang, C.7
-
22
-
-
0032864055
-
The evolutionary landscape of functional model proteins
-
Hirst J.D. The evolutionary landscape of functional model proteins. Protein Eng. 12:1999;721-726.
-
(1999)
Protein Eng
, vol.12
, pp. 721-726
-
-
Hirst, J.D.1
-
23
-
-
0035933969
-
Evolution of functional model proteins
-
Blackburne B.P., Hirst J.D. Evolution of functional model proteins. J Chem Phys. 115:2001;1935-1942.
-
(2001)
J Chem Phys
, vol.115
, pp. 1935-1942
-
-
Blackburne, B.P.1
Hirst, J.D.2
-
24
-
-
0042880977
-
Three-dimensional functional model proteins: Structure, function and evolution
-
Blackburne B.P., Hirst J.D. Three-dimensional functional model proteins: structure, function and evolution. J Chem Phys. 119:2003;3453-3460.
-
(2003)
J Chem Phys
, vol.119
, pp. 3453-3460
-
-
Blackburne, B.P.1
Hirst, J.D.2
-
25
-
-
0029883960
-
From structure to sequence and back again
-
Hinds D.A., Levitt M. From structure to sequence and back again. J Mol Biol. 258:1996;201-209.
-
(1996)
J Mol Biol
, vol.258
, pp. 201-209
-
-
Hinds, D.A.1
Levitt, M.2
-
26
-
-
0033533517
-
Neutral evolution of model proteins: Diffusion in sequence space and overdispersion
-
Bastolla U., Roman H.E., Vendruscolo M. Neutral evolution of model proteins: diffusion in sequence space and overdispersion. J Theor Biol. 200:1999;49-64.
-
(1999)
J Theor Biol
, vol.200
, pp. 49-64
-
-
Bastolla, U.1
Roman, H.E.2
Vendruscolo, M.3
-
27
-
-
0000105754
-
Structurally constrained protein evolution: Results from a lattice simulation
-
Bastolla U., Vendruscolo M., Roman H.E. Structurally constrained protein evolution: results from a lattice simulation. Eur Phys J B. 15:2000;385-397.
-
(2000)
Eur Phys J B
, vol.15
, pp. 385-397
-
-
Bastolla, U.1
Vendruscolo, M.2
Roman, H.E.3
-
28
-
-
0034656952
-
Hiking in the energy landscape in sequence space: A bumpy road to good folders
-
Tiana G., Broglia R.A., Shakhnovich E.I. Hiking in the energy landscape in sequence space: a bumpy road to good folders. Proteins. 39:2000;244-251.
-
(2000)
Proteins
, vol.39
, pp. 244-251
-
-
Tiana, G.1
Broglia, R.A.2
Shakhnovich, E.I.3
-
29
-
-
0035684659
-
Energy profile of the space of model protein sequences
-
Tiana G., Broglia R.A., Shakhnovich E.I. Energy profile of the space of model protein sequences. J Biol Phys. 27:2001;147-159.
-
(2001)
J Biol Phys
, vol.27
, pp. 147-159
-
-
Tiana, G.1
Broglia, R.A.2
Shakhnovich, E.I.3
-
30
-
-
0035823104
-
Exploring protein sequence space using knowledge-based potentials
-
Babajide A., Farber R., Hofacker I.L., Inman J., Lapedes A.S., Stadler P.F. Exploring protein sequence space using knowledge-based potentials. J Theor Biol. 212:2001;35-46.
-
(2001)
J Theor Biol
, vol.212
, pp. 35-46
-
-
Babajide, A.1
Farber, R.2
Hofacker, I.L.3
Inman, J.4
Lapedes, A.S.5
Stadler, P.F.6
-
31
-
-
0037459903
-
An in silico exploration of the neutral network in protein sequence space
-
Aita T., Ota M., Husimi Y. An in silico exploration of the neutral network in protein sequence space. J Theor Biol. 221:2003;599-613.
-
(2003)
J Theor Biol
, vol.221
, pp. 599-613
-
-
Aita, T.1
Ota, M.2
Husimi, Y.3
-
32
-
-
0015133749
-
Self-organization of matter and the evolution of biological macromolecules
-
Eigen M. Self-organization of matter and the evolution of biological macromolecules. Naturwissenschaften. 58:1971;465-523.
-
(1971)
Naturwissenschaften
, vol.58
, pp. 465-523
-
-
Eigen, M.1
-
33
-
-
0032577365
-
Continuity in evolution: On the nature of transitions
-
Fontana W., Schuster P. Continuity in evolution: on the nature of transitions. Science. 280:1998;1451-1455.
-
(1998)
Science
, vol.280
, pp. 1451-1455
-
-
Fontana, W.1
Schuster, P.2
-
34
-
-
0035913336
-
Evolution of digital organisms at high mutation rates leads to survival of the flattest
-
Wilke C.O., Wang J.L., Ofria C., Lenski R.E., Adami C. Evolution of digital organisms at high mutation rates leads to survival of the flattest. Nature. 412:2001;331-333.
-
(2001)
Nature
, vol.412
, pp. 331-333
-
-
Wilke, C.O.1
Wang, J.L.2
Ofria, C.3
Lenski, R.E.4
Adami, C.5
-
36
-
-
0032510675
-
On the thermodynamic hypothesis of protein folding
-
Govindarajan S., Goldstein R.A. On the thermodynamic hypothesis of protein folding. Proc Natl Acad Sci USA. 95:1998;5545-5549.
-
(1998)
Proc Natl Acad Sci USA
, vol.95
, pp. 5545-5549
-
-
Govindarajan, S.1
Goldstein, R.A.2
-
37
-
-
0036306115
-
Why are proteins so robust to site mutations?
-
The authors studied two models of protein sequence evolution. In the first model, a viable sequence diffuses randomly over the range of allowed sequences. In the second model, a sequence population evolves over the range of allowed sequences via mutation, selection and reproduction. It was found that evolved proteins in the second model are more robust to site mutations than those in the first model. This result suggests that mutational robustness is a population dynamics effect.
-
Taverna D.M., Goldstein R.A. Why are proteins so robust to site mutations? J Mol Biol. 315:2002;479-484 The authors studied two models of protein sequence evolution. In the first model, a viable sequence diffuses randomly over the range of allowed sequences. In the second model, a sequence population evolves over the range of allowed sequences via mutation, selection and reproduction. It was found that evolved proteins in the second model are more robust to site mutations than those in the first model. This result suggests that mutational robustness is a population dynamics effect.
-
(2002)
J Mol Biol
, vol.315
, pp. 479-484
-
-
Taverna, D.M.1
Goldstein, R.A.2
-
38
-
-
0036678845
-
Roles of mutation and recombination in the evolution of protein thermodynamics
-
Xia Y., Levitt M. Roles of mutation and recombination in the evolution of protein thermodynamics. Proc Natl Acad Sci USA. 99:2002;10382-10387.
-
(2002)
Proc Natl Acad Sci USA
, vol.99
, pp. 10382-10387
-
-
Xia, Y.1
Levitt, M.2
-
39
-
-
0036034977
-
Correlation between the conformation space and the sequence space of peptide chain
-
Sasaki T.N., Sasai M. Correlation between the conformation space and the sequence space of peptide chain. J Biol Phys. 28:2002;483-492.
-
(2002)
J Biol Phys
, vol.28
, pp. 483-492
-
-
Sasaki, T.N.1
Sasai, M.2
-
40
-
-
0036139093
-
Why are proteins marginally stable?
-
Taverna D.M., Goldstein R.A. Why are proteins marginally stable? Proteins. 46:2002;105-109.
-
(2002)
Proteins
, vol.46
, pp. 105-109
-
-
Taverna, D.M.1
Goldstein, R.A.2
-
41
-
-
0033987966
-
The distribution of structures in evolving protein populations
-
Taverna D.M., Goldstein R.A. The distribution of structures in evolving protein populations. Biopolymers. 53:2000;1-8.
-
(2000)
Biopolymers
, vol.53
, pp. 1-8
-
-
Taverna, D.M.1
Goldstein, R.A.2
-
44
-
-
0037373550
-
Connectivity of neutral networks, overdispersion, and structural conservation in protein evolution
-
Bastolla U., Porto M., Eduardo Roman M.H., Vendruscolo M.H. Connectivity of neutral networks, overdispersion, and structural conservation in protein evolution. J Mol Evol. 56:2003;243-254.
-
(2003)
J Mol Evol
, vol.56
, pp. 243-254
-
-
Bastolla, U.1
Porto, M.2
Eduardo Roman, M.H.3
Vendruscolo, M.H.4
-
45
-
-
0345306764
-
Design of a novel globular protein fold with atomic-level accuracy
-
Computational protein design was used to create a new protein sequence with a novel topology. The subsequent X-ray structure of the protein is very close to the design model, with a root mean square difference of 1.2 Å for 93 residues.
-
Kuhlman B., Dantas G., Ireton G.C., Varani G., Stoddard B.L., Baker D. Design of a novel globular protein fold with atomic-level accuracy. Science. 302:2003;1364-1368 Computational protein design was used to create a new protein sequence with a novel topology. The subsequent X-ray structure of the protein is very close to the design model, with a root mean square difference of 1.2 Å for 93 residues.
-
(2003)
Science
, vol.302
, pp. 1364-1368
-
-
Kuhlman, B.1
Dantas, G.2
Ireton, G.C.3
Varani, G.4
Stoddard, B.L.5
Baker, D.6
-
46
-
-
1342324030
-
Exploring folding free energy landscapes using computational protein design
-
Kuhlman B., Baker D. Exploring folding free energy landscapes using computational protein design. Curr Opin Struct Biol. 14:2004;89-95.
-
(2004)
Curr Opin Struct Biol
, vol.14
, pp. 89-95
-
-
Kuhlman, B.1
Baker, D.2
-
47
-
-
0033550264
-
De novo protein design. II. Plasticity in sequence space
-
Koehl P., Levitt M. De novo protein design. II. Plasticity in sequence space. J Mol Biol. 293:1999;1183-1193.
-
(1999)
J Mol Biol
, vol.293
, pp. 1183-1193
-
-
Koehl, P.1
Levitt, M.2
-
48
-
-
0034641749
-
Native protein sequences are close to optimal for their structures
-
Kuhlman B., Baker D. Native protein sequences are close to optimal for their structures. Proc Natl Acad Sci USA. 97:2000;10383-10388.
-
(2000)
Proc Natl Acad Sci USA
, vol.97
, pp. 10383-10388
-
-
Kuhlman, B.1
Baker, D.2
-
49
-
-
0035823119
-
Understanding hierarchical protein evolution from first principles
-
Dokholyan N.V., Shakhnovich E.I. Understanding hierarchical protein evolution from first principles. J Mol Biol. 312:2001;289-307.
-
(2001)
J Mol Biol
, vol.312
, pp. 289-307
-
-
Dokholyan, N.V.1
Shakhnovich, E.I.2
-
50
-
-
0037022286
-
Protein topology and stability define the space of allowed sequences
-
Using all-atom computational protein design and a physical energy function, the authors estimated the size of sequence space compatible with a fold using multiple alignments of the designed sequences. It was found that the volume of sequence space compatible with a fold is similar in size to that observed in nature. This is a promising method for identifying highly designable folds.
-
Koehl P., Levitt M. Protein topology and stability define the space of allowed sequences. Proc Natl Acad Sci USA. 99:2002;1280-1285 Using all-atom computational protein design and a physical energy function, the authors estimated the size of sequence space compatible with a fold using multiple alignments of the designed sequences. It was found that the volume of sequence space compatible with a fold is similar in size to that observed in nature. This is a promising method for identifying highly designable folds.
-
(2002)
Proc Natl Acad Sci USA
, vol.99
, pp. 1280-1285
-
-
Koehl, P.1
Levitt, M.2
-
51
-
-
0036892389
-
Thoroughly sampling sequence space: Large-scale protein design of structural ensembles
-
Larson S.M., England J.L., Desjarlais J.R., Pande V.S. Thoroughly sampling sequence space: large-scale protein design of structural ensembles. Protein Sci. 11:2002;2804-2813.
-
(2002)
Protein Sci
, vol.11
, pp. 2804-2813
-
-
Larson, S.M.1
England, J.L.2
Desjarlais, J.R.3
Pande, V.S.4
-
52
-
-
0037108748
-
Folding free energy function selects native-like protein sequences in the core but not on the surface
-
Jaramillo A., Wernisch L., Hery S., Wodak S.J. Folding free energy function selects native-like protein sequences in the core but not on the surface. Proc Natl Acad Sci USA. 99:2002;13554-13559.
-
(2002)
Proc Natl Acad Sci USA
, vol.99
, pp. 13554-13559
-
-
Jaramillo, A.1
Wernisch, L.2
Hery, S.3
Wodak, S.J.4
-
53
-
-
0041734982
-
Sequence optimization for native state stability determines the evolution and folding kinetics of a small protein
-
Larson S.M., Pande V.S. Sequence optimization for native state stability determines the evolution and folding kinetics of a small protein. J Mol Biol. 332:2003;275-286.
-
(2003)
J Mol Biol
, vol.332
, pp. 275-286
-
-
Larson, S.M.1
Pande, V.S.2
-
54
-
-
0041530316
-
NMR and temperature-jump measurements of de novo designed proteins demonstrate rapid folding in the absence of explicit selection for kinetics
-
Gillespie B., Vu D.M., Shah P.S., Marshall S.A., Dyer R.B., Mayo S.L., Plaxco K.W. NMR and temperature-jump measurements of de novo designed proteins demonstrate rapid folding in the absence of explicit selection for kinetics. J Mol Biol. 330:2003;813-819.
-
(2003)
J Mol Biol
, vol.330
, pp. 813-819
-
-
Gillespie, B.1
Vu, D.M.2
Shah, P.S.3
Marshall, S.A.4
Dyer, R.B.5
Mayo, S.L.6
Plaxco, K.W.7
-
55
-
-
0000741681
-
Analytical approach to the protein design problem
-
Kussell E.L., Shakhnovich E.I. Analytical approach to the protein design problem. Phys Rev Lett. 83:1999;4437-4440.
-
(1999)
Phys Rev Lett
, vol.83
, pp. 4437-4440
-
-
Kussell, E.L.1
Shakhnovich, E.I.2
-
56
-
-
0037093651
-
Identifying proteins of high designability via surface-exposure patterns
-
Emberly E.G., Miller J., Zeng C., Wingreen N.S., Tang C. Identifying proteins of high designability via surface-exposure patterns. Proteins. 47:2002;295-304.
-
(2002)
Proteins
, vol.47
, pp. 295-304
-
-
Emberly, E.G.1
Miller, J.2
Zeng, C.3
Wingreen, N.S.4
Tang, C.5
-
57
-
-
0041673352
-
Structural determinant of protein designability
-
England J.L., Shakhnovich E.I. Structural determinant of protein designability. Phys Rev Lett. 90:2003;218101.
-
(2003)
Phys Rev Lett
, vol.90
, pp. 218101
-
-
England, J.L.1
Shakhnovich, E.I.2
-
58
-
-
0041305985
-
Natural selection of more designable folds: A mechanism for thermophilic adaptation
-
England J.L., Shakhnovich B.E., Shakhnovich E.I. Natural selection of more designable folds: a mechanism for thermophilic adaptation. Proc Natl Acad Sci USA. 100:2003;8727-8731.
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, pp. 8727-8731
-
-
England, J.L.1
Shakhnovich, B.E.2
Shakhnovich, E.I.3
-
59
-
-
0037338289
-
Structure space of model proteins: A principal component analysis
-
Yahyanejad M., Kardar M., Tang C. Structure space of model proteins: a principal component analysis. J Chem Phys. 118:2003;4277-4284.
-
(2003)
J Chem Phys
, vol.118
, pp. 4277-4284
-
-
Yahyanejad, M.1
Kardar, M.2
Tang, C.3
-
60
-
-
0036606863
-
Emergence of highly designable protein-backbone conformations in an off-lattice model
-
Miller J., Zeng C., Wingreen N.S., Tang C. Emergence of highly designable protein-backbone conformations in an off-lattice model. Proteins. 47:2002;506-512.
-
(2002)
Proteins
, vol.47
, pp. 506-512
-
-
Miller, J.1
Zeng, C.2
Wingreen, N.S.3
Tang, C.4
-
61
-
-
0037143609
-
Designability of alpha-helical proteins
-
The authors extensively sampled structure space for all compact four-helix bundles connected by short turns. Highly designable structures were identified from this ensemble, most of which resemble known four-helix-bundle folds. The few novel ones can serve as targets for protein design.
-
Emberly E.G., Wingreen N.S., Tang C. Designability of alpha-helical proteins. Proc Natl Acad Sci USA. 99:2002;11163-11168 The authors extensively sampled structure space for all compact four-helix bundles connected by short turns. Highly designable structures were identified from this ensemble, most of which resemble known four-helix-bundle folds. The few novel ones can serve as targets for protein design.
-
(2002)
Proc Natl Acad Sci USA
, vol.99
, pp. 11163-11168
-
-
Emberly, E.G.1
Wingreen, N.S.2
Tang, C.3
-
62
-
-
0031924363
-
The frequency distribution of gene family sizes in complete genomes
-
Huynen M.A., van Nimwegen E. The frequency distribution of gene family sizes in complete genomes. Mol Biol Evol. 15:1998;583-589.
-
(1998)
Mol Biol Evol
, vol.15
, pp. 583-589
-
-
Huynen, M.A.1
Van Nimwegen, E.2
-
63
-
-
0034683244
-
Predictions of gene family distributions in microbial genomes: Evolution by gene duplication and modification
-
Yanai I., Camacho C.J., DeLisi C. Predictions of gene family distributions in microbial genomes: evolution by gene duplication and modification. Phys Rev Lett. 85:2000;2641-2644.
-
(2000)
Phys Rev Lett
, vol.85
, pp. 2641-2644
-
-
Yanai, I.1
Camacho, C.J.2
Delisi, C.3
-
64
-
-
0035798398
-
Protein family and fold occurrence in genomes: Power-law behaviour and evolutionary model
-
Qian J., Luscombe N.M., Gerstein M. Protein family and fold occurrence in genomes: power-law behaviour and evolutionary model. J Mol Biol. 313:2001;673-681.
-
(2001)
J Mol Biol
, vol.313
, pp. 673-681
-
-
Qian, J.1
Luscombe, N.M.2
Gerstein, M.3
-
65
-
-
0037079014
-
The structure of the protein universe and genome evolution
-
Koonin E.V., Wolf Y.I., Karev G.P. The structure of the protein universe and genome evolution. Nature. 420:2002;218-223.
-
(2002)
Nature
, vol.420
, pp. 218-223
-
-
Koonin, E.V.1
Wolf, Y.I.2
Karev, G.P.3
-
69
-
-
0346492908
-
Designability and thermal stability of protein structures
-
Wingreen N.S., Li H., Tang C. Designability and thermal stability of protein structures. Polymer. 45:2004;699-705.
-
(2004)
Polymer
, vol.45
, pp. 699-705
-
-
Wingreen, N.S.1
Li, H.2
Tang, C.3
|