-
2
-
-
0035014156
-
-
(b) Umek, R. M.; Lin, S. W.; Vielmetter, J.; Terbrueggen, R. H.; Irvine, B.; Yu, C. J.; Kayyem, J. F.; Yowanto, H.; Blackburn, G. F.; Farkas. D. H.; Chen, Y. P. J. Mol. Diag. 2001, 3, 74.
-
(2001)
J. Mol. Diag.
, vol.3
, pp. 74
-
-
Umek, R.M.1
Lin, S.W.2
Vielmetter, J.3
Terbrueggen, R.H.4
Irvine, B.5
Yu, C.J.6
Kayyem, J.F.7
Yowanto, H.8
Blackburn, G.F.9
Farkas, D.H.10
Chen, Y.P.11
-
4
-
-
0032191459
-
-
(a) Balakin, K. V.; Korshun, V. A.; Mikhalev, I. L.; Maleev, G. V.; Malakhov A. D.; Prokhorenko, I. A.; Berlin, Yu. A. Biosens. Bioelectron. 1998, 13, 771.
-
(1998)
Biosens. Bioelectron.
, vol.13
, pp. 771
-
-
Balakin, K.V.1
Korshun, V.A.2
Mikhalev, I.L.3
Maleev, G.V.4
Malakhov, A.D.5
Prokhorenko, I.A.6
Berlin, Yu.A.7
-
5
-
-
0033523687
-
-
Niemeyer, C. M.; Blohm, D. Angew. Chem., Int. Ed. 1999, 38, 2865.
-
(1999)
Angew. Chem., Int. Ed.
, vol.38
, pp. 2865
-
-
Niemeyer, C.M.1
Blohm, D.2
-
6
-
-
0037134914
-
-
Gerion, D.; Parak, W. J.; Williams, S. C.; Zanchet, D.; Micheel. C. M.; Alivisatos, A. P. J. Am. Cheem. Soc. 2002, 124, 7070.
-
(2002)
J. Am. Cheem. Soc.
, vol.124
, pp. 7070
-
-
Gerion, D.1
Parak, W.J.2
Williams, S.C.3
Zanchet, D.4
Micheel, C.M.5
Alivisatos, A.P.6
-
7
-
-
0012392952
-
-
Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Science 1998, 281, 2013.
-
(1998)
Science
, vol.281
, pp. 2013
-
-
Bruchez, M.1
Moronne, M.2
Gin, P.3
Weiss, S.4
Alivisatos, A.P.5
-
9
-
-
0034721456
-
-
He, L.; Musick, M. D.; Nicewamer, S. R.; Salinas, F. G.; Benkovic, S. J.; Natan, M. J.; Keating, C. D. J. Am. Chem. Soc. 2000, 122, 9071.
-
(2000)
J. Am. Chem. Soc.
, vol.122
, pp. 9071
-
-
He, L.1
Musick, M.D.2
Nicewamer, S.R.3
Salinas, F.G.4
Benkovic, S.J.5
Natan, M.J.6
Keating, C.D.7
-
10
-
-
0035163623
-
-
Nelson. B. P.; Grimsrud, T. E.; Liles, M. R.; Goodman, R. M.; Corn, R. M. Anal. Chem. 2001, 73, 1.
-
(2001)
Anal. Chem.
, vol.73
, pp. 1
-
-
Nelson, B.P.1
Grimsrud, T.E.2
Liles, M.R.3
Goodman, R.M.4
Corn, R.M.5
-
11
-
-
0036250095
-
-
Tombelli, S.; Minunni, M.; Mascini, M. Anal. Lett. 2002, 35, 599.
-
(2002)
Anal. Lett.
, vol.35
, pp. 599
-
-
Tombelli, S.1
Minunni, M.2
Mascini, M.3
-
12
-
-
0037028570
-
-
Patolsky, F.; Weizmann, Y.; Willner, I. J. Am. Chem. Soc. 2002, 124, 770.
-
(2002)
J. Am. Chem. Soc.
, vol.124
, pp. 770
-
-
Patolsky, F.1
Weizmann, Y.2
Willner, I.3
-
14
-
-
0036009633
-
-
and the references therein
-
Sueda, S.; Yuan, J.; Matsumoto, K. Bioconjugate Chem. 2002, 13, 200 and the references therein.
-
(2002)
Bioconjugate Chem.
, vol.13
, pp. 200
-
-
Sueda, S.1
Yuan, J.2
Matsumoto, K.3
-
15
-
-
0032529292
-
-
Paris, P. L.; Langenhan, J. M.; Kool, E. T. Nucleic Acids Res. 1998, 26, 3789.
-
(1998)
Nucleic Acids Res.
, vol.26
, pp. 3789
-
-
Paris, P.L.1
Langenhan, J.M.2
Kool, E.T.3
-
17
-
-
0034247881
-
-
Petty, J. T.; Bordelon, J. A.; Robertson, M. E. J. Phys. Chem. B 2000, 104, 7221.
-
(2000)
J. Phys. Chem. B
, vol.104
, pp. 7221
-
-
Petty, J.T.1
Bordelon, J.A.2
Robertson, M.E.3
-
18
-
-
0000706201
-
-
Cardullo, R. A.; Agrawal, S.; Flores, C.; Zamechnik, P. C.; Wolf. D. E. Proc. Natl. Acad. Sci. U.S.A. 1988, 85, 8790.
-
(1988)
Proc. Natl. Acad. Sci. U.S.A.
, vol.85
, pp. 8790
-
-
Cardullo, R.A.1
Agrawal, S.2
Flores, C.3
Zamechnik, P.C.4
Wolf, D.E.5
-
20
-
-
0034663372
-
-
Knemeyer, J.; Marme, N.; Sauer, M. Anal. Chem. 2000, 72, 3717.
-
(2000)
Anal. Chem.
, vol.72
, pp. 3717
-
-
Knemeyer, J.1
Marme, N.2
Sauer, M.3
-
21
-
-
0037143672
-
-
Gaylord, B. S.; Heeger, A. J.; Bazan, G. C. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 10954.
-
(2002)
Proc. Natl. Acad. Sci. U.S.A.
, vol.99
, pp. 10954
-
-
Gaylord, B.S.1
Heeger, A.J.2
Bazan, G.C.3
-
22
-
-
0033607186
-
-
For the use of conjugated polymer in biosensor applications see: (a) Chen, L.; Mcbranch, D. W.; Wang, H. L.; Helgeson, R.; Wudl, F.; Whitten, D. G. Proc. Natl. Acad. Sci. U.S.A. 2000, 96, 12287. (b) Wang. D.; Gong, X.; Heeger, P. S.; Rininsland. F.; Bazan, G. C.; Heeger, A. J. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 49. (c) Ho, H.-A.; Boissinot, M.; Bergeron. M. G.; Corbeil, G.; Dore, K.; Boudreau, D.; Leclerc, M. Angew. Chem., Int. Ed. 2002, 41, 1548.
-
(2000)
Proc. Natl. Acad. Sci. U.S.A.
, vol.96
, pp. 12287
-
-
Chen, L.1
Mcbranch, D.W.2
Wang, H.L.3
Helgeson, R.4
Wudl, F.5
Whitten, D.G.6
-
23
-
-
0037039435
-
-
For the use of conjugated polymer in biosensor applications see: (a) Chen, L.; Mcbranch. D. W.; Wang, H. L.; Helgeson, R.; Wudl, F.; Whitten, D. G. Proc. Natl. Acad. Sci. U.S.A. 2000, 96, 12287. (b) Wang. D.; Gong, X.; Heeger, P. S.; Rininsland. F.; Bazan, G. C.; Heeger, A. J. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 49. (c) Ho, H.-A.; Boissinot, M.; Bergeron. M. G.; Corbeil, G.; Dore, K.; Boudreau, D.; Leclerc, M. Angew. Chem., Int. Ed. 2002, 41, 1548.
-
(2002)
Proc. Natl. Acad. Sci. U.S.A.
, vol.99
, pp. 49
-
-
Wang, D.1
Gong, X.2
Heeger, P.S.3
Rininsland, F.4
Bazan, G.C.5
Heeger, A.J.6
-
24
-
-
0037012674
-
-
For the use of conjugated polymer in biosensor applications see: (a) Chen, L.; Mcbranch. D. W.; Wang, H. L.; Helgeson, R.; Wudl, F.; Whitten, D. G. Proc. Natl. Acad. Sci. U.S.A. 2000, 96, 12287. (b) Wang. D.; Gong, X.; Heeger, P. S.; Rininsland. F.; Bazan, G. C.; Heeger, A. J. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 49. (c) Ho, H.-A.; Boissinot, M.; Bergeron. M. G.; Corbeil, G.; Dore, K.; Boudreau, D.; Leclerc, M. Angew. Chem., Int. Ed. 2002, 41, 1548.
-
(2002)
Angew. Chem., Int. Ed.
, vol.41
, pp. 1548
-
-
Ho, H.-A.1
Boissinot, M.2
Bergeron, M.G.3
Corbeil, G.4
Dore, K.5
Boudreau, D.6
Leclerc, M.7
-
25
-
-
0003936711
-
-
Horizon Scientific Press: Portland
-
In PNAs, the negatively charged phosphate linkages in DNA are replaced with peptomimetic neutral amide linkages. PNA/DNA complexes form more quickly, with higher binding energies, and they are more specific than analogous DNA/DNA complexes. These enhanced properties result from the absence of the Coulomb repulsion between negatively charged DNA strands. PNA complexes are thus more thermally stable and, by virtue of their backbone, less susceptible to biological degradation by nucleases, proteases, and peptidases. Additionally, their general insensitivity to ionic strength and pH during hybridization provides a wider platform for DNA detection. For references see: (a) Nielsen, P. E.; Egholm, M. Peptide Nucleic Acids: Protocols and Applications: Horizon Scientific Press: Portland, 1999. (b) Stender, H.; Fiandaca, M.; Hyldig-Nielsen, J. J.; Coull, J. J. Microbiol, Methods 2002, 48, 1. (c) Egholm, M.; Buchardt, O.; Christensen, L.; Behrens, C.; Freier, S. M.; Driver, D. A.; Berg, R. H.; Kim. S. K.; Norden, B.; Nielsen, P. E. Nature 1993, 365, 556. (d) Nielsen, P. E. Curr. Opin. Biotechnol. 1999, 10, 71. (e) Demidov, V. V. Biochem. Pharmacol. 1994, 48. 1310.
-
(1999)
Peptide Nucleic Acids: Protocols and Applications
-
-
Nielsen, P.E.1
Egholm, M.2
-
26
-
-
0036132829
-
-
In PNAs, the negatively charged phosphate linkages in DNA are replaced with peptomimetic neutral amide linkages. PNA/DNA complexes form more quickly, with higher binding energies, and they are more specific than analogous DNA/DNA complexes. These enhanced properties result from the absence of the Coulomb repulsion between negatively charged DNA strands. PNA complexes are thus more thermally stable and, by virtue of their backbone, less susceptible to biological degradation by nucleases, proteases, and peptidases. Additionally, their general insensitivity to ionic strength and pH during hybridization provides a wider platform for DNA detection. For references see: (a) Nielsen, P. E.; Egholm, M. Peptide Nucleic Acids: Protocols and Applications: Horizon Scientific Press: Portland, 1999. (b) Stender, H.; Fiandaca, M.; Hyldig-Nielsen, J. J.; Coull, J. J. Microbiol, Methods 2002, 48, 1. (c) Egholm, M.; Buchardt, O.; Christensen, L.; Behrens, C.; Freier, S. M.; Driver, D. A.; Berg, R. H.; Kim. S. K.; Norden, B.; Nielsen, P. E. Nature 1993, 365, 556. (d) Nielsen, P. E. Curr. Opin. Biotechnol. 1999, 10, 71. (e) Demidov, V. V. Biochem. Pharmacol. 1994, 48. 1310.
-
(2002)
J. Microbiol. Methods
, vol.48
, pp. 1
-
-
Stender, H.1
Fiandaca, M.2
Hyldig-Nielsen, J.J.3
Coull, J.4
-
27
-
-
0000548627
-
-
In PNAs, the negatively charged phosphate linkages in DNA are replaced with peptomimetic neutral amide linkages. PNA/DNA complexes form more quickly, with higher binding energies, and they are more specific than analogous DNA/DNA complexes. These enhanced properties result from the absence of the Coulomb repulsion between negatively charged DNA strands. PNA complexes are thus more thermally stable and, by virtue of their backbone, less susceptible to biological degradation by nucleases, proteases, and peptidases. Additionally, their general insensitivity to ionic strength and pH during hybridization provides a wider platform for DNA detection. For references see: (a) Nielsen, P. E.; Egholm, M. Peptide Nucleic Acids: Protocols and Applications: Horizon Scientific Press: Portland, 1999. (b) Stender, H.; Fiandaca, M.; Hyldig-Nielsen, J. J.; Coull, J. J. Microbiol, Methods 2002, 48, 1. (c) Egholm, M.; Buchardt, O.; Christensen, L.; Behrens, C.; Freier, S. M.; Driver, D. A.; Berg, R. H.; Kim. S. K.; Norden, B.; Nielsen, P. E. Nature 1993, 365, 556. (d) Nielsen, P. E. Curr. Opin. Biotechnol. 1999, 10, 71. (e) Demidov, V. V. Biochem. Pharmacol. 1994, 48. 1310.
-
(1993)
Nature
, vol.365
, pp. 556
-
-
Egholm, M.1
Buchardt, O.2
Christensen, L.3
Behrens, C.4
Freier, S.M.5
Driver, D.A.6
Berg, R.H.7
Kim, S.K.8
Norden, B.9
Nielsen, P.E.10
-
28
-
-
0032925881
-
-
In PNAs, the negatively charged phosphate linkages in DNA are replaced with peptomimetic neutral amide linkages. PNA/DNA complexes form more quickly, with higher binding energies, and they are more specific than analogous DNA/DNA complexes. These enhanced properties result from the absence of the Coulomb repulsion between negatively charged DNA strands. PNA complexes are thus more thermally stable and, by virtue of their backbone, less susceptible to biological degradation by nucleases, proteases, and peptidases. Additionally, their general insensitivity to ionic strength and pH during hybridization provides a wider platform for DNA detection. For references see: (a) Nielsen, P. E.; Egholm, M. Peptide Nucleic Acids: Protocols and Applications: Horizon Scientific Press: Portland, 1999. (b) Stender, H.; Fiandaca, M.; Hyldig-Nielsen, J. J.; Coull, J. J. Microbiol, Methods 2002, 48, 1. (c) Egholm, M.; Buchardt, O.; Christensen, L.; Behrens, C.; Freier, S. M.; Driver, D. A.; Berg, R. H.; Kim. S. K.; Norden, B.; Nielsen, P. E. Nature 1993, 365, 556. (d) Nielsen, P. E. Curr. Opin. Biotechnol. 1999, 10, 71. (e) Demidov, V. V. Biochem. Pharmacol. 1994, 48. 1310.
-
(1999)
Curr. Opin. Biotechnol.
, vol.10
, pp. 71
-
-
Nielsen, P.E.1
-
29
-
-
0028129843
-
-
In PNAs, the negatively charged phosphate linkages in DNA are replaced with peptomimetic neutral amide linkages. PNA/DNA complexes form more quickly, with higher binding energies, and they are more specific than analogous DNA/DNA complexes. These enhanced properties result from the absence of the Coulomb repulsion between negatively charged DNA strands. PNA complexes are thus more thermally stable and, by virtue of their backbone, less susceptible to biological degradation by nucleases, proteases, and peptidases. Additionally, their general insensitivity to ionic strength and pH during hybridization provides a wider platform for DNA detection. For references see: (a) Nielsen, P. E.; Egholm, M. Peptide Nucleic Acids: Protocols and Applications: Horizon Scientific Press: Portland, 1999. (b) Stender, H.; Fiandaca, M.; Hyldig-Nielsen, J. J.; Coull, J. J. Microbiol, Methods 2002, 48, 1. (c) Egholm, M.; Buchardt, O.; Christensen, L.; Behrens, C.; Freier, S. M.; Driver, D. A.; Berg, R. H.; Kim. S. K.; Norden, B.; Nielsen, P. E. Nature 1993, 365, 556. (d) Nielsen, P. E. Curr. Opin. Biotechnol. 1999, 10, 71. (e) Demidov, V. V. Biochem. Pharmacol. 1994, 48. 1310.
-
(1994)
Biochem. Pharmacol.
, vol.48
, pp. 1310
-
-
Demidov, V.V.1
-
32
-
-
0034645573
-
-
(b) McQuade, D. T.; Hegedus, A. H.; Swager, T. M. J. Am. Chem. Soc. 2000, 122, 12389.
-
(2000)
J. Am. Chem. Soc.
, vol.122
, pp. 12389
-
-
McQuade, D.T.1
Hegedus, A.H.2
Swager, T.M.3
-
34
-
-
0033828743
-
-
(d) Harrison, B. S.; Ramey, M. B.; Reynolds, J. R. J. Am. Chem. Soc. 2000, 122, 8561.
-
(2000)
J. Am. Chem. Soc.
, vol.122
, pp. 8561
-
-
Harrison, B.S.1
Ramey, M.B.2
Reynolds, J.R.3
-
35
-
-
0034226408
-
-
Wang, J.; Wang, D.; Miller, E. K.; Moses, D.; Bazan, G. C.; Heeger, A. J. Macromolecules 2000, 33, 5153.
-
(2000)
Macromolecules
, vol.33
, pp. 5153
-
-
Wang, J.1
Wang, D.2
Miller, E.K.3
Moses, D.4
Bazan, G.C.5
Heeger, A.J.6
-
36
-
-
0034806919
-
-
Gaylord, B. S.; Wang, S.; Heeger, A. J.; Bazan, G. C. J. Am. Chem. Soc. 2001, 123, 6417.
-
(2001)
J. Am. Chem. Soc.
, vol.123
, pp. 6417
-
-
Gaylord, B.S.1
Wang, S.2
Heeger, A.J.3
Bazan, G.C.4
-
39
-
-
0033833099
-
-
Bronich, T. K.; Nguyen, H. K.; Eisenberg, A.; Kabanov, A. V. J. Am. Chem. Soc. 2000. 122, 8339.
-
(2000)
J. Am. Chem. Soc.
, vol.122
, pp. 8339
-
-
Bronich, T.K.1
Nguyen, H.K.2
Eisenberg, A.3
Kabanov, A.V.4
-
40
-
-
0020485720
-
-
(a) Pullman, B.; Lavery, R.; Pullman, A. Eur. J. Biochem. 1982, 124, 229.
-
(1982)
Eur. J. Biochem.
, vol.124
, pp. 229
-
-
Pullman, B.1
Lavery, R.2
Pullman, A.3
-
41
-
-
0028192721
-
-
(b) Minehan, D. S.; Marx, D. A.; Tripathy, S. K. Macromolecules 1994, 27, 777.
-
(1994)
Macromolecules
, vol.27
, pp. 777
-
-
Minehan, D.S.1
Marx, D.A.2
Tripathy, S.K.3
-
42
-
-
0037017887
-
-
Stork, M. S.; Gaylord, B. S.; Heeger, A. J.; Bazan. G. C. Adv. Mater. 2002, 14, 361.
-
(2002)
Adv. Mater.
, vol.14
, pp. 361
-
-
Stork, M.S.1
Gaylord, B.S.2
Heeger, A.J.3
Bazan, G.C.4
-
43
-
-
0024595710
-
-
Makino, S.; Uchida, I.; Terakado, N.; Sasakawa, C.; Yoshikawa. M. J. Bacteriol. 1989, 171, 722.
-
(1989)
J. Bacteriol.
, vol.171
, pp. 722
-
-
Makino, S.1
Uchida, I.2
Terakado, N.3
Sasakawa, C.4
Yoshikawa, M.5
-
44
-
-
0346914367
-
-
note
-
Fluorescein was chosen because it is one of the most ubiquitous dyes used in FRET experiments and because it can be easily attached to DNA structures. Its fluorescence and absorbance properties are known to be pH dependent, and the highest quantum yield is obtained for the fluorescein dianion. The pH of the SSC buffer used for this study is about 8.3. In our experiment, the quantum yield of ss-DNA-C* was determined to be 94%, using 9,10-diphenylanthraacene as the standard.
-
-
-
-
46
-
-
0031952376
-
-
(a) Giesendorf, B. A. J.; Vet, J. A. M.; Tyangi, S.; Mensink, E. J. M. G.; Trijbels, F. J. M.; Blom, H. J. Clin. Chem. 1998, 44, 482.
-
(1998)
Clin. Chem.
, vol.44
, pp. 482
-
-
Giesendorf, B.A.J.1
Vet, J.A.M.2
Tyangi, S.3
Mensink, E.J.M.G.4
Trijbels, F.J.M.5
Blom, H.J.6
-
47
-
-
0035710229
-
-
(b) Giulietti, A.; Overbergh, L.; Valckx, D.; Decallonne, B.; Bouillon, R.; Mathieu, C. Methods 2001, 25, 386.
-
(2001)
Methods
, vol.25
, pp. 386
-
-
Giulietti, A.1
Overbergh, L.2
Valckx, D.3
Decallonne, B.4
Bouillon, R.5
Mathieu, C.6
-
48
-
-
0346284239
-
-
note
-
Circular dichroism experiments indicated no change in DNA conformation upon addition of 1, nor did they show the emergence of any signal from 1. This result indicates that the rigid polyfluorene structure most likely does not adapt to the DNA conformation upon complexation. They also suggest that binding into the grooves of DNA, like other cationic dyes such as ethidium bromide, is not a dominant form of association. Any twisting to accommodate such groove binding or helical conformation would likely shorten the effective conjugation length in the conducting polymer and thus blue shift the emission. This information strengthens the idea that interactions between DNA and 1 are largely due to electrostatics.
-
-
-
-
49
-
-
5244304618
-
-
Hydrophobic interactions between aromatic polymer units and DNA bases have also been recognized. See for example: Ganachaud, F.; Eaïssari, A.; Pichot, C.; Laayoun, A.; Cros, P. Langmuir 1997, 13, 701.
-
(1997)
Langmuir
, vol.13
, pp. 701
-
-
Ganachaud, F.1
Eaïssari, A.2
Pichot, C.3
Laayoun, A.4
Cros, P.5
|