메뉴 건너뛰기




Volumn 125, Issue 4, 2003, Pages 896-900

DNA hybridization detection with water-soluble conjugated polymers and chromophore-labeled single-stranded DNA

Author keywords

[No Author keywords available]

Indexed keywords

HYBRIDIZATIONS; OLIGONUCLEOTIDES;

EID: 0037471635     PISSN: 00027863     EISSN: None     Source Type: Journal    
DOI: 10.1021/ja027152+     Document Type: Article
Times cited : (440)

References (49)
  • 22
    • 0033607186 scopus 로고    scopus 로고
    • For the use of conjugated polymer in biosensor applications see: (a) Chen, L.; Mcbranch, D. W.; Wang, H. L.; Helgeson, R.; Wudl, F.; Whitten, D. G. Proc. Natl. Acad. Sci. U.S.A. 2000, 96, 12287. (b) Wang. D.; Gong, X.; Heeger, P. S.; Rininsland. F.; Bazan, G. C.; Heeger, A. J. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 49. (c) Ho, H.-A.; Boissinot, M.; Bergeron. M. G.; Corbeil, G.; Dore, K.; Boudreau, D.; Leclerc, M. Angew. Chem., Int. Ed. 2002, 41, 1548.
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.96 , pp. 12287
    • Chen, L.1    Mcbranch, D.W.2    Wang, H.L.3    Helgeson, R.4    Wudl, F.5    Whitten, D.G.6
  • 23
    • 0037039435 scopus 로고    scopus 로고
    • For the use of conjugated polymer in biosensor applications see: (a) Chen, L.; Mcbranch. D. W.; Wang, H. L.; Helgeson, R.; Wudl, F.; Whitten, D. G. Proc. Natl. Acad. Sci. U.S.A. 2000, 96, 12287. (b) Wang. D.; Gong, X.; Heeger, P. S.; Rininsland. F.; Bazan, G. C.; Heeger, A. J. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 49. (c) Ho, H.-A.; Boissinot, M.; Bergeron. M. G.; Corbeil, G.; Dore, K.; Boudreau, D.; Leclerc, M. Angew. Chem., Int. Ed. 2002, 41, 1548.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 49
    • Wang, D.1    Gong, X.2    Heeger, P.S.3    Rininsland, F.4    Bazan, G.C.5    Heeger, A.J.6
  • 24
    • 0037012674 scopus 로고    scopus 로고
    • For the use of conjugated polymer in biosensor applications see: (a) Chen, L.; Mcbranch. D. W.; Wang, H. L.; Helgeson, R.; Wudl, F.; Whitten, D. G. Proc. Natl. Acad. Sci. U.S.A. 2000, 96, 12287. (b) Wang. D.; Gong, X.; Heeger, P. S.; Rininsland. F.; Bazan, G. C.; Heeger, A. J. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 49. (c) Ho, H.-A.; Boissinot, M.; Bergeron. M. G.; Corbeil, G.; Dore, K.; Boudreau, D.; Leclerc, M. Angew. Chem., Int. Ed. 2002, 41, 1548.
    • (2002) Angew. Chem., Int. Ed. , vol.41 , pp. 1548
    • Ho, H.-A.1    Boissinot, M.2    Bergeron, M.G.3    Corbeil, G.4    Dore, K.5    Boudreau, D.6    Leclerc, M.7
  • 25
    • 0003936711 scopus 로고    scopus 로고
    • Horizon Scientific Press: Portland
    • In PNAs, the negatively charged phosphate linkages in DNA are replaced with peptomimetic neutral amide linkages. PNA/DNA complexes form more quickly, with higher binding energies, and they are more specific than analogous DNA/DNA complexes. These enhanced properties result from the absence of the Coulomb repulsion between negatively charged DNA strands. PNA complexes are thus more thermally stable and, by virtue of their backbone, less susceptible to biological degradation by nucleases, proteases, and peptidases. Additionally, their general insensitivity to ionic strength and pH during hybridization provides a wider platform for DNA detection. For references see: (a) Nielsen, P. E.; Egholm, M. Peptide Nucleic Acids: Protocols and Applications: Horizon Scientific Press: Portland, 1999. (b) Stender, H.; Fiandaca, M.; Hyldig-Nielsen, J. J.; Coull, J. J. Microbiol, Methods 2002, 48, 1. (c) Egholm, M.; Buchardt, O.; Christensen, L.; Behrens, C.; Freier, S. M.; Driver, D. A.; Berg, R. H.; Kim. S. K.; Norden, B.; Nielsen, P. E. Nature 1993, 365, 556. (d) Nielsen, P. E. Curr. Opin. Biotechnol. 1999, 10, 71. (e) Demidov, V. V. Biochem. Pharmacol. 1994, 48. 1310.
    • (1999) Peptide Nucleic Acids: Protocols and Applications
    • Nielsen, P.E.1    Egholm, M.2
  • 26
    • 0036132829 scopus 로고    scopus 로고
    • In PNAs, the negatively charged phosphate linkages in DNA are replaced with peptomimetic neutral amide linkages. PNA/DNA complexes form more quickly, with higher binding energies, and they are more specific than analogous DNA/DNA complexes. These enhanced properties result from the absence of the Coulomb repulsion between negatively charged DNA strands. PNA complexes are thus more thermally stable and, by virtue of their backbone, less susceptible to biological degradation by nucleases, proteases, and peptidases. Additionally, their general insensitivity to ionic strength and pH during hybridization provides a wider platform for DNA detection. For references see: (a) Nielsen, P. E.; Egholm, M. Peptide Nucleic Acids: Protocols and Applications: Horizon Scientific Press: Portland, 1999. (b) Stender, H.; Fiandaca, M.; Hyldig-Nielsen, J. J.; Coull, J. J. Microbiol, Methods 2002, 48, 1. (c) Egholm, M.; Buchardt, O.; Christensen, L.; Behrens, C.; Freier, S. M.; Driver, D. A.; Berg, R. H.; Kim. S. K.; Norden, B.; Nielsen, P. E. Nature 1993, 365, 556. (d) Nielsen, P. E. Curr. Opin. Biotechnol. 1999, 10, 71. (e) Demidov, V. V. Biochem. Pharmacol. 1994, 48. 1310.
    • (2002) J. Microbiol. Methods , vol.48 , pp. 1
    • Stender, H.1    Fiandaca, M.2    Hyldig-Nielsen, J.J.3    Coull, J.4
  • 27
    • 0000548627 scopus 로고
    • In PNAs, the negatively charged phosphate linkages in DNA are replaced with peptomimetic neutral amide linkages. PNA/DNA complexes form more quickly, with higher binding energies, and they are more specific than analogous DNA/DNA complexes. These enhanced properties result from the absence of the Coulomb repulsion between negatively charged DNA strands. PNA complexes are thus more thermally stable and, by virtue of their backbone, less susceptible to biological degradation by nucleases, proteases, and peptidases. Additionally, their general insensitivity to ionic strength and pH during hybridization provides a wider platform for DNA detection. For references see: (a) Nielsen, P. E.; Egholm, M. Peptide Nucleic Acids: Protocols and Applications: Horizon Scientific Press: Portland, 1999. (b) Stender, H.; Fiandaca, M.; Hyldig-Nielsen, J. J.; Coull, J. J. Microbiol, Methods 2002, 48, 1. (c) Egholm, M.; Buchardt, O.; Christensen, L.; Behrens, C.; Freier, S. M.; Driver, D. A.; Berg, R. H.; Kim. S. K.; Norden, B.; Nielsen, P. E. Nature 1993, 365, 556. (d) Nielsen, P. E. Curr. Opin. Biotechnol. 1999, 10, 71. (e) Demidov, V. V. Biochem. Pharmacol. 1994, 48. 1310.
    • (1993) Nature , vol.365 , pp. 556
    • Egholm, M.1    Buchardt, O.2    Christensen, L.3    Behrens, C.4    Freier, S.M.5    Driver, D.A.6    Berg, R.H.7    Kim, S.K.8    Norden, B.9    Nielsen, P.E.10
  • 28
    • 0032925881 scopus 로고    scopus 로고
    • In PNAs, the negatively charged phosphate linkages in DNA are replaced with peptomimetic neutral amide linkages. PNA/DNA complexes form more quickly, with higher binding energies, and they are more specific than analogous DNA/DNA complexes. These enhanced properties result from the absence of the Coulomb repulsion between negatively charged DNA strands. PNA complexes are thus more thermally stable and, by virtue of their backbone, less susceptible to biological degradation by nucleases, proteases, and peptidases. Additionally, their general insensitivity to ionic strength and pH during hybridization provides a wider platform for DNA detection. For references see: (a) Nielsen, P. E.; Egholm, M. Peptide Nucleic Acids: Protocols and Applications: Horizon Scientific Press: Portland, 1999. (b) Stender, H.; Fiandaca, M.; Hyldig-Nielsen, J. J.; Coull, J. J. Microbiol, Methods 2002, 48, 1. (c) Egholm, M.; Buchardt, O.; Christensen, L.; Behrens, C.; Freier, S. M.; Driver, D. A.; Berg, R. H.; Kim. S. K.; Norden, B.; Nielsen, P. E. Nature 1993, 365, 556. (d) Nielsen, P. E. Curr. Opin. Biotechnol. 1999, 10, 71. (e) Demidov, V. V. Biochem. Pharmacol. 1994, 48. 1310.
    • (1999) Curr. Opin. Biotechnol. , vol.10 , pp. 71
    • Nielsen, P.E.1
  • 29
    • 0028129843 scopus 로고
    • In PNAs, the negatively charged phosphate linkages in DNA are replaced with peptomimetic neutral amide linkages. PNA/DNA complexes form more quickly, with higher binding energies, and they are more specific than analogous DNA/DNA complexes. These enhanced properties result from the absence of the Coulomb repulsion between negatively charged DNA strands. PNA complexes are thus more thermally stable and, by virtue of their backbone, less susceptible to biological degradation by nucleases, proteases, and peptidases. Additionally, their general insensitivity to ionic strength and pH during hybridization provides a wider platform for DNA detection. For references see: (a) Nielsen, P. E.; Egholm, M. Peptide Nucleic Acids: Protocols and Applications: Horizon Scientific Press: Portland, 1999. (b) Stender, H.; Fiandaca, M.; Hyldig-Nielsen, J. J.; Coull, J. J. Microbiol, Methods 2002, 48, 1. (c) Egholm, M.; Buchardt, O.; Christensen, L.; Behrens, C.; Freier, S. M.; Driver, D. A.; Berg, R. H.; Kim. S. K.; Norden, B.; Nielsen, P. E. Nature 1993, 365, 556. (d) Nielsen, P. E. Curr. Opin. Biotechnol. 1999, 10, 71. (e) Demidov, V. V. Biochem. Pharmacol. 1994, 48. 1310.
    • (1994) Biochem. Pharmacol. , vol.48 , pp. 1310
    • Demidov, V.V.1
  • 44
    • 0346914367 scopus 로고    scopus 로고
    • note
    • Fluorescein was chosen because it is one of the most ubiquitous dyes used in FRET experiments and because it can be easily attached to DNA structures. Its fluorescence and absorbance properties are known to be pH dependent, and the highest quantum yield is obtained for the fluorescein dianion. The pH of the SSC buffer used for this study is about 8.3. In our experiment, the quantum yield of ss-DNA-C* was determined to be 94%, using 9,10-diphenylanthraacene as the standard.
  • 48
    • 0346284239 scopus 로고    scopus 로고
    • note
    • Circular dichroism experiments indicated no change in DNA conformation upon addition of 1, nor did they show the emergence of any signal from 1. This result indicates that the rigid polyfluorene structure most likely does not adapt to the DNA conformation upon complexation. They also suggest that binding into the grooves of DNA, like other cationic dyes such as ethidium bromide, is not a dominant form of association. Any twisting to accommodate such groove binding or helical conformation would likely shorten the effective conjugation length in the conducting polymer and thus blue shift the emission. This information strengthens the idea that interactions between DNA and 1 are largely due to electrostatics.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.