메뉴 건너뛰기




Volumn 8, Issue 6, 1998, Pages 704-712

The mechanism of action of T7 DNA polymerase

Author keywords

[No Author keywords available]

Indexed keywords

DNA POLYMERASE;

EID: 0032425080     PISSN: 0959440X     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0959-440X(98)80089-4     Document Type: Article
Times cited : (180)

References (73)
  • 1
    • 0028206048 scopus 로고
    • Function and structure relationships in DNA polymerases
    • 1. Joyce CM, Steitz TA: Function and structure relationships in DNA polymerases. Annu Rev Biochem 1994, 63:777-822.
    • (1994) Annu Rev Biochem , vol.63 , pp. 777-822
    • Joyce, C.M.1    Steitz, T.A.2
  • 2
    • 0029056926 scopus 로고
    • Crystal structure of the large fragment of Thermus aquaticus DNA polymerase I at 2.5-Å resolution: Structural basis for thermostability
    • 2. Korolev S, Nayal M, Barnes WM, Di Cera E, Waksman G: Crystal structure of the large fragment of Thermus aquaticus DNA polymerase I at 2.5-Å resolution: structural basis for thermostability. Proc Natl Acad Sci USA 1995, 92:9264-9268.
    • (1995) Proc Natl Acad Sci USA , vol.92 , pp. 9264-9268
    • Korolev, S.1    Nayal, M.2    Barnes, W.M.3    Di Cera, E.4    Waksman, G.5
  • 4
    • 0030592095 scopus 로고    scopus 로고
    • Structure of Taq polymerase with DNA at the polymerase active site
    • 4. Eom SH, Wang J, Steitz TA: Structure of Taq polymerase with DNA at the polymerase active site. Nature 1996, 382:278-281.
    • (1996) Nature , vol.382 , pp. 278-281
    • Eom, S.H.1    Wang, J.2    Steitz, T.A.3
  • 6
    • 0032518524 scopus 로고    scopus 로고
    • Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal
    • 6. Kiefer JR, Mao C, Braman JC, Beese LS: Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal. Nature 1998, 391:304-307. The authors describe several structures of the Bst DNA polymerase in complex with a DNA primer-template that had been extended by several cycles of nucleotide addition actually in the crystals. Polymerization and translocation of the DNA occur within the crystal lattice and the resulting DNA product is shown in the polymerase active site.
    • (1998) Nature , vol.391 , pp. 304-307
    • Kiefer, J.R.1    Mao, C.2    Braman, J.C.3    Beese, L.S.4
  • 7
    • 0032518398 scopus 로고    scopus 로고
    • Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution
    • 7. Doublié S, Tabor S, Long AM, Richardson CC, Ellenberger T: Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution. Nature 1998, 391:251-258. The authors describe the first structure determination of a processive polymerase complexed with DNA primer-template and incoming nucleotide. The fingers subdomain of the polymerase closes onto the incoming nucleotide, creating a very tight binding site that can only accommodate Watson-Crick base pairs. The closing of the fingers aligns the incoming nucleotide vis-a-vis both the 3′-end of the primer and the two metals in the active site that are poised to participate in phosphoryl transfer.
    • (1998) Nature , vol.391 , pp. 251-258
    • Doublié, S.1    Tabor, S.2    Long, A.M.3    Richardson, C.C.4    Ellenberger, T.5
  • 8
    • 0032489041 scopus 로고    scopus 로고
    • Polymerases and the replisome: Machines within machines
    • 8. Baker TA, Bell SP: Polymerases and the replisome: machines within machines. Cell 1998, 92:295-305.
    • (1998) Cell , vol.92 , pp. 295-305
    • Baker, T.A.1    Bell, S.P.2
  • 10
    • 0032005866 scopus 로고    scopus 로고
    • Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes
    • 10. Brautigam CA, Steitz TA: Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes. Curr Opin Struct Biol 1998, 8:54-63.
    • (1998) Curr Opin Struct Biol , vol.8 , pp. 54-63
    • Brautigam, C.A.1    Steitz, T.A.2
  • 11
    • 0032520210 scopus 로고    scopus 로고
    • Processivity of DNA polymerases: Two mechanisms, one goal
    • 11. Kelman Z, Hurwitz J, O'Donnell M: Processivity of DNA polymerases: two mechanisms, one goal. Structure 1998, 6:121-125.
    • (1998) Structure , vol.6 , pp. 121-125
    • Kelman, Z.1    Hurwitz, J.2    O'Donnell, M.3
  • 12
    • 0029023051 scopus 로고
    • A single residue in DNA polymerases of the Escherichia coli DNA polymerase I family is critical for distinguishing between deoxy-and dideoxyribonucleotides
    • 12. Tabor S, Richardson CC: A single residue in DNA polymerases of the Escherichia coli DNA polymerase I family is critical for distinguishing between deoxy-and dideoxyribonucleotides. Proc Natl Acad Sci USA 1995, 92:6339-6343.
    • (1995) Proc Natl Acad Sci USA , vol.92 , pp. 6339-6343
    • Tabor, S.1    Richardson, C.C.2
  • 13
    • 0032562549 scopus 로고    scopus 로고
    • How E. coli DNA polymerase I (Klenow fragment) distinguishes between deoxy-and dideoxynucleotides
    • 13. Astatke M, Grindley ND, Joyce CM: How E. coli DNA polymerase I (Klenow fragment) distinguishes between deoxy-and dideoxynucleotides. J Mol Biol 1998, 278:147-165. Residues in the active site of a Klenow fragment polymerase were examined for their effects on the efficiency of ddNTP incorporation, relative to normal dNTP substrates. Of the many mutant polymerases examined, only residue substitutions involving Phe762 selectively relieved discrimination against ddNTPs, primarily by increasing their rate of incorporation.
    • (1998) J Mol Biol , vol.278 , pp. 147-165
    • Astatke, M.1    Grindley, N.D.2    Joyce, C.M.3
  • 14
    • 0032584219 scopus 로고    scopus 로고
    • A single side chain prevents Escherichia coli DNA polymerase I (Klenow fragment) from incorporating ribonucleotides
    • 14. Astatke M, Ng K, Grindley ND, Joyce CM: A single side chain prevents Escherichia coli DNA polymerase I (Klenow fragment) from incorporating ribonucleotides. Proc Natl Acad Sci USA 1998, 95:3402-3407. The authors demonstrate the crucial role of the Klenow fragment residue Glu710 as a 'steric gate' that discriminates against ribonucleotide incorporation. A mutant polymerase with alanine substituted for Glu710 is permissive for the addition of a single ribonucleotide, but it cannot synthesize RNA, implying that additional barriers prevent the incorporation of successive ribonucleotides.
    • (1998) Proc Natl Acad Sci USA , vol.95 , pp. 3402-3407
    • Astatke, M.1    Ng, K.2    Grindley, N.D.3    Joyce, C.M.4
  • 15
    • 0030906056 scopus 로고    scopus 로고
    • Base miscoding and strand misalignment errors by mutator Klenow polymerases with amino acid substitutions at tyrosine 766 in the O helix of the fingers subdomain
    • 15. Bell JB, Eckert KA, Joyce CM, Kunkel TA: Base miscoding and strand misalignment errors by mutator Klenow polymerases with amino acid substitutions at tyrosine 766 in the O helix of the fingers subdomain. J Biol Chem 1997, 272:7345-7351.
    • (1997) J Biol Chem , vol.272 , pp. 7345-7351
    • Bell, J.B.1    Eckert, K.A.2    Joyce, C.M.3    Kunkel, T.A.4
  • 16
    • 0030967829 scopus 로고    scopus 로고
    • A thymidine triphosphate shape analog lacking Watson-Crick pairing ability is replicated with high sequence selectivity
    • 16. Moran S, Ren RX, Kool ET: A thymidine triphosphate shape analog lacking Watson-Crick pairing ability is replicated with high sequence selectivity. Proc Natl Acad Sci USA 1997, 94:10506-10511. The authors demonstrate that the Klenow fragment selectively incorporates a nonpolar thymine analog opposite a template adenine. This thymine isostere has little or no capacity to hydrogen bond with adenine, demonstrating that nucleotide shape contributes greatly to the accuracy of template-directed DNA synthesis.
    • (1997) Proc Natl Acad Sci USA , vol.94 , pp. 10506-10511
    • Moran, S.1    Ren, R.X.2    Kool, E.T.3
  • 17
    • 0033613841 scopus 로고    scopus 로고
    • Side chains that influence fidelity at the polymerase active site of Escherichia coli DNA polymerase I (Klenow fragment)
    • in press
    • 17. Minnick DT, Bebenek K, Osheroff WR Turner RM Jr, Astatke M, Liu L, Kunkel TA, Joyce CM: Side chains that influence fidelity at the polymerase active site of Escherichia coli DNA polymerase I (Klenow fragment). J Biol Chem 1999, in press. Five residues in the Klenow fragment polymerase active site are shown to influence the fidelity of DNA synthesis in distinctive ways. Alanine substitutions at these positions cause characteristic error specificities, with differential effects on nucleotide incorporation and the extension of a mismatched primer-template. These residues contact the bound DNA and/or nucleotide in crystal structures of Pol I family polymerases.
    • (1999) J Biol Chem
    • Minnick, D.T.1    Bebenek, K.2    Osheroff, W.R.3    Turner R.M., Jr.4    Astatke, M.5    Liu, L.6    Kunkel, T.A.7    Joyce, C.M.8
  • 18
    • 0031587827 scopus 로고    scopus 로고
    • Crystal structure of a pol alpha family replication DNA polymerase from bacteriophage RB69
    • 18. Wang J, Sattar AK, Wang CC, Karam JD, Konigsberg WH, Steitz TA: Crystal structure of a pol alpha family replication DNA polymerase from bacteriophage RB69. Cell 1997, 89:1087-1099. The first crystal structure determination of a pol α family-type polymerase reveals similarities, but also considerable differences to the Pol I family polymerases, including the position of the proofreading exonuclease domain with respect to the polymerase domain.
    • (1997) Cell , vol.89 , pp. 1087-1099
    • Wang, J.1    Sattar, A.K.2    Wang, C.C.3    Karam, J.D.4    Konigsberg, W.H.5    Steitz, T.A.6
  • 19
    • 0028049441 scopus 로고
    • Structures of ternary complexes of rat DNA polymerase beta, a DNA template-primer, and ddCTP
    • 19. Pelletier H, Sawaya MR, Kumar A, Wilson SH, Kraut J: Structures of ternary complexes of rat DNA polymerase beta, a DNA template-primer, and ddCTP. Science 1994, 264:1891-1903.
    • (1994) Science , vol.264 , pp. 1891-1903
    • Pelletier, H.1    Sawaya, M.R.2    Kumar, A.3    Wilson, S.H.4    Kraut, J.5
  • 20
    • 0030930760 scopus 로고    scopus 로고
    • Crystal structures of human DNA polymerase beta complexed with gapped and nicked DNA: Evidence for an induced fit mechanism
    • 20. Sawaya MR, Prasad R, Wilson SH, Kraut J, Pelletier H: Crystal structures of human DNA polymerase beta complexed with gapped and nicked DNA: evidence for an induced fit mechanism. Biochemistry 1997, 36:11205-11215. Three structures of DNA polymerase β complexed to DNA substrates are described, each of which represent intermediates of the gap-filling reaction catalyzed by this repair polymerase. The C-terminal domain of the polymerase closes towards the active site only when the correct nucleotide is bound. The authors discuss an induced fit mechanism used by polymerase β to increase fidelity.
    • (1997) Biochemistry , vol.36 , pp. 11205-11215
    • Sawaya, M.R.1    Prasad, R.2    Wilson, S.H.3    Kraut, J.4    Pelletier, H.5
  • 22
    • 0027411261 scopus 로고
    • DNA-and RNA-dependent DNA polymerases
    • 22. Steitz TA: DNA-and RNA-dependent DNA polymerases. Curr Opin Struct Biol 1993, 3:31-38.
    • (1993) Curr Opin Struct Biol , vol.3 , pp. 31-38
    • Steitz, T.A.1
  • 23
    • 0030968710 scopus 로고    scopus 로고
    • Mechanistic aspects of enzymatic catalysis: Lessons from comparison of RNA and protein enzymes
    • 23. Narlikar GJ, Herschlag D: Mechanistic aspects of enzymatic catalysis: lessons from comparison of RNA and protein enzymes. Annu Rev Biochem 1997, 66:19-59.
    • (1997) Annu Rev Biochem , vol.66 , pp. 19-59
    • Narlikar, G.J.1    Herschlag, D.2
  • 24
    • 0032522882 scopus 로고    scopus 로고
    • How do kinases transfer phosphoryl groups?
    • 24. Matte A, Tari LW, Delbaere LT: How do kinases transfer phosphoryl groups? Structure 1998, 6:413-419.
    • (1998) Structure , vol.6 , pp. 413-419
    • Matte, A.1    Tari, L.W.2    Delbaere, L.T.3
  • 26
    • 0016817216 scopus 로고
    • Conformation of deoxynucleoside triphosphate substrates on DNA polymerase I from Escherichia coli as determined by nuclear magnetic relaxation
    • 26. Sloan DL, Loeb LA, Mildvan AS: Conformation of deoxynucleoside triphosphate substrates on DNA polymerase I from Escherichia coli as determined by nuclear magnetic relaxation. J Biol Chem 1975, 250:8913-8920.
    • (1975) J Biol Chem , vol.250 , pp. 8913-8920
    • Sloan, D.L.1    Loeb, L.A.2    Mildvan, A.S.3
  • 27
    • 0018287755 scopus 로고
    • A study of the mechanism of DNA polymerase I from Escherichia coli with diastereomeric phosphorothioate analogs of deoxyadenosine triphosphate
    • 27. Burgers PM, Eckstein F: A study of the mechanism of DNA polymerase I from Escherichia coli with diastereomeric phosphorothioate analogs of deoxyadenosine triphosphate. J Biol Chem 1979, 254:6889-6893.
    • (1979) J Biol Chem , vol.254 , pp. 6889-6893
    • Burgers, P.M.1    Eckstein, F.2
  • 28
    • 0026019625 scopus 로고
    • Structural basis for the 3′-5′ exonuclease activity of Escherichia coli DNA polymerase I: A two metal ion mechanism
    • 28. Beese LS, Steitz TA: Structural basis for the 3′-5′ exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. EMBO J 1991, 10:25-33.
    • (1991) EMBO J , vol.10 , pp. 25-33
    • Beese, L.S.1    Steitz, T.A.2
  • 29
    • 0032571245 scopus 로고    scopus 로고
    • Structural principles for the inhibition of the 3′-5′ exonuclease activity of Escherichia coli DNA polymerase I by phosphorothioates
    • 29. Brautigam CA, Steitz TA: Structural principles for the inhibition of the 3′-5′ exonuclease activity of Escherichia coli DNA polymerase I by phosphorothioates. J Mol Biol 1998, 277:363-377.
    • (1998) J Mol Biol , vol.277 , pp. 363-377
    • Brautigam, C.A.1    Steitz, T.A.2
  • 30
    • 0026410002 scopus 로고
    • Structural aspects of metal liganding to functional groups in proteins
    • 30. Glusker JP: Structural aspects of metal liganding to functional groups in proteins. Adv Protein Chem 1991, 42:1-76.
    • (1991) Adv Protein Chem , vol.42 , pp. 1-76
    • Glusker, J.P.1
  • 31
    • 0019513160 scopus 로고
    • Unambiguous determination of the stereochemistry of nucleotidyl transfer catalyzed by DNA polymerase I from Escherichia coli
    • 31. Brody RS, Frey PA: Unambiguous determination of the stereochemistry of nucleotidyl transfer catalyzed by DNA polymerase I from Escherichia coli. Biochemistry 1981, 20:1245-1252.
    • (1981) Biochemistry , vol.20 , pp. 1245-1252
    • Brody, R.S.1    Frey, P.A.2
  • 32
    • 0020326689 scopus 로고
    • Stereochemical course of nucleotidyl transfer catalyzed by bacteriophage T7 induced DNA polymerase
    • 32. Brody RS, Adler S, Modrich P, Stec WJ, Leznikowski ZJ, Frey PA: Stereochemical course of nucleotidyl transfer catalyzed by bacteriophage T7 induced DNA polymerase. Biochemistry 1982, 21:2570-2572.
    • (1982) Biochemistry , vol.21 , pp. 2570-2572
    • Brody, R.S.1    Adler, S.2    Modrich, P.3    Stec, W.J.4    Leznikowski, Z.J.5    Frey, P.A.6
  • 34
    • 0015935336 scopus 로고
    • Catalytic reactions of phosphoglucose isomerase with cyclic forms of glucose 6-phosphate and fructose 6-phosphate
    • 34. Schray KJ, Benkovic SJ, Benkovic PA, Rose IA: Catalytic reactions of phosphoglucose isomerase with cyclic forms of glucose 6-phosphate and fructose 6-phosphate. J Biol Chem 1973, 248:2219-2224.
    • (1973) J Biol Chem , vol.248 , pp. 2219-2224
    • Schray, K.J.1    Benkovic, S.J.2    Benkovic, P.A.3    Rose, I.A.4
  • 35
    • 0018881742 scopus 로고
    • Enzyme-catalyzed phosphoryl transfer reactions
    • 35. Knowles JR: Enzyme-catalyzed phosphoryl transfer reactions. Annu Rev Biochem 1980, 49:877-919.
    • (1980) Annu Rev Biochem , vol.49 , pp. 877-919
    • Knowles, J.R.1
  • 36
    • 33845184717 scopus 로고
    • Phosphoryl transfer to anionic oxygen nucleophiles. Nature of the transition state and electrostatic repulsion
    • 36. Herschlag D, Jencks WP: Phosphoryl transfer to anionic oxygen nucleophiles. Nature of the transition state and electrostatic repulsion. J Am Chem Soc 1989, 111:7587-7596.
    • (1989) J Am Chem Soc , vol.111 , pp. 7587-7596
    • Herschlag, D.1    Jencks, W.P.2
  • 37
    • 0029410712 scopus 로고
    • Mapping the transition state for ATP hydrolysis: Implications for enzymatic catalysis
    • 37. Admiraal SJ, Herschlag D: Mapping the transition state for ATP hydrolysis: implications for enzymatic catalysis. Chem Biol 1995, 2:729-739.
    • (1995) Chem Biol , vol.2 , pp. 729-739
    • Admiraal, S.J.1    Herschlag, D.2
  • 39
    • 0027730441 scopus 로고
    • Crystal structures of the Klenow fragment of DNA polymerase I complexed with deoxynucleoside triphosphate and pyrophosphate
    • 39. Beese LS, Friedman JM, Steitz TA: Crystal structures of the Klenow fragment of DNA polymerase I complexed with deoxynucleoside triphosphate and pyrophosphate. Biochemistry 1993, 32:14095-14101.
    • (1993) Biochemistry , vol.32 , pp. 14095-14101
    • Beese, L.S.1    Friedman, J.M.2    Steitz, T.A.3
  • 40
    • 0016783924 scopus 로고
    • The steady state kinetic parameters and non-processivity of Escherichia coli deoxyribonucleic acid polymerase I
    • 40. McClure WR, Jovin TM: The steady state kinetic parameters and non-processivity of Escherichia coli deoxyribonucleic acid polymerase I. J Biol Chem 1975, 250:4073-4080.
    • (1975) J Biol Chem , vol.250 , pp. 4073-4080
    • McClure, W.R.1    Jovin, T.M.2
  • 41
    • 0023770718 scopus 로고
    • Kinetic mechanism whereby DNA polymerase I (Klenow) replicates DNA with high fidelity
    • 41. Kuchta RD, Benkovic P, Benkovic SJ: Kinetic mechanism whereby DNA polymerase I (Klenow) replicates DNA with high fidelity. Biochemistry 1988, 27:6716-6725.
    • (1988) Biochemistry , vol.27 , pp. 6716-6725
    • Kuchta, R.D.1    Benkovic, P.2    Benkovic, S.J.3
  • 42
    • 0025799903 scopus 로고
    • Kinetic mechanism of DNA polymerase I (Klenow fragment): Identification of a second conformational change and evaluation of the internal equilibrium constant
    • 42. Dahlberg ME, Benkovic SJ: Kinetic mechanism of DNA polymerase I (Klenow fragment): identification of a second conformational change and evaluation of the internal equilibrium constant. Biochemistry 1991, 30:4835-4843.
    • (1991) Biochemistry , vol.30 , pp. 4835-4843
    • Dahlberg, M.E.1    Benkovic, S.J.2
  • 43
    • 0026033193 scopus 로고
    • Pre-steady-state kinetic analysis of processive DNA replication including complete characterization of an exonuclease-deficient mutant
    • 43. Patel SS, Wong I, Johnson KA: Pre-steady-state kinetic analysis of processive DNA replication including complete characterization of an exonuclease-deficient mutant. Biochemistry 1991, 30:51-525.
    • (1991) Biochemistry , vol.30 , pp. 51-525
    • Patel, S.S.1    Wong, I.2    Johnson, K.A.3
  • 44
    • 0026026192 scopus 로고
    • An induced-fit kinetic mechanism for DNA replication fidelity: Direct measurement by single-turnover kinetics
    • 44. Wong I, Patel SS, Johnson KA: An induced-fit kinetic mechanism for DNA replication fidelity: direct measurement by single-turnover kinetics. Biochemistry 1991, 30:526-537.
    • (1991) Biochemistry , vol.30 , pp. 526-537
    • Wong, I.1    Patel, S.S.2    Johnson, K.A.3
  • 45
    • 0027231782 scopus 로고
    • Structure of DNA polymerase I Klenow fragment bound to duplex DNA
    • 45. Beese LS, Derbyshire V, Steitz TA: Structure of DNA polymerase I Klenow fragment bound to duplex DNA. Science 1993, 260:352-355.
    • (1993) Science , vol.260 , pp. 352-355
    • Beese, L.S.1    Derbyshire, V.2    Steitz, T.A.3
  • 46
    • 0028136070 scopus 로고
    • Crystal structure of rat DNA polymerase beta: Evidence for a common polymerase mechanism
    • 46. Sawaya MR, Pelletier H, Kumar A, Wilson SH, Kraut J: Crystal structure of rat DNA polymerase beta: evidence for a common polymerase mechanism. Science 1994, 264:1930-1935.
    • (1994) Science , vol.264 , pp. 1930-1935
    • Sawaya, M.R.1    Pelletier, H.2    Kumar, A.3    Wilson, S.H.4    Kraut, J.5
  • 47
    • 0026713678 scopus 로고
    • Side chains involved in catalysis of the polymerase reaction of DNA polymerase I from Escherichia coli
    • 47. Polesky AH, Dahlberg ME, Benkovic SJ, Grindley ND, Joyce CM: Side chains involved in catalysis of the polymerase reaction of DNA polymerase I from Escherichia coli. J Biol Chem 1992, 267:8417-8428.
    • (1992) J Biol Chem , vol.267 , pp. 8417-8428
    • Polesky, A.H.1    Dahlberg, M.E.2    Benkovic, S.J.3    Grindley, N.D.4    Joyce, C.M.5
  • 48
    • 0028947982 scopus 로고
    • Deoxynucleoside triphosphate and pyrophosphate binding sites in the catalytically competent ternary complex for the polymerase reaction catalyzed by DNA polymerase I (Klenow fragment)
    • 48. Astatke M, Grindley ND, Joyce CM: Deoxynucleoside triphosphate and pyrophosphate binding sites in the catalytically competent ternary complex for the polymerase reaction catalyzed by DNA polymerase I (Klenow fragment). J Biol Chem 1995, 270:1945-1954.
    • (1995) J Biol Chem , vol.270 , pp. 1945-1954
    • Astatke, M.1    Grindley, N.D.2    Joyce, C.M.3
  • 49
    • 0029894752 scopus 로고    scopus 로고
    • Significance of the O-helix residues of Escherichia coli DNA polymerase I in DNA synthesis: Dynamics of the dNTP binding pocket
    • 49. Kaushik N, Pandey VN, Modak MJ: Significance of the O-helix residues of Escherichia coli DNA polymerase I in DNA synthesis: dynamics of the dNTP binding pocket Biochemistry 1996, 35:7256-7266.
    • (1996) Biochemistry , vol.35 , pp. 7256-7266
    • Kaushik, N.1    Pandey, V.N.2    Modak, M.J.3
  • 50
    • 0026029379 scopus 로고
    • A mutant of DNA polymerase I (Klenow fragment) with reduced fidelity
    • 50. Carroll SS, Cowart M, Benkovic SJ: A mutant of DNA polymerase I (Klenow fragment) with reduced fidelity. Biochemistry 1991, 30:804-813.
    • (1991) Biochemistry , vol.30 , pp. 804-813
    • Carroll, S.S.1    Cowart, M.2    Benkovic, S.J.3
  • 51
    • 0028564813 scopus 로고
    • Mutants affecting nucleotide recognition by T7 DNA polymerase
    • 51. Donlin MJ, Johnson KA: Mutants affecting nucleotide recognition by T7 DNA polymerase. Biochemistry 1994, 33:14908-14917.
    • (1994) Biochemistry , vol.33 , pp. 14908-14917
    • Donlin, M.J.1    Johnson, K.A.2
  • 52
    • 0031861823 scopus 로고    scopus 로고
    • Crystal structures of the Klenow fragment of Thermus aquaticus DNA polymerase I complexed with deoxyribonucleoside triphosphates
    • 52. Li Y, Kong Y, Korolev S, Waksman G: Crystal structures of the Klenow fragment of Thermus aquaticus DNA polymerase I complexed with deoxyribonucleoside triphosphates. Protein Sci 1998, 7:1116-1123. Four structures of Taq DNA polymerase complexed to each of the natural dNTPs are described. The interactions of basic residues with the triphosphate group of the bound nucleotide are nearly identical in all four Taq polymerase structures and are similar to those in the T7 polymerase complex. The sidechain of Tyr671 (Tyr530 of T7 polymerase) does not contact the nucleotide and is not in a fixed conformation in the absence of a DNA primer-template.
    • (1998) Protein Sci , vol.7 , pp. 1116-1123
    • Li, Y.1    Kong, Y.2    Korolev, S.3    Waksman, G.4
  • 53
    • 0025783442 scopus 로고
    • Fidelity mechanisms in DNA replication
    • 53. Echols H, Goodman MF: Fidelity mechanisms in DNA replication. Annu Rev Biochem 1991, 60:477-511.
    • (1991) Annu Rev Biochem , vol.60 , pp. 477-511
    • Echols, H.1    Goodman, M.F.2
  • 54
    • 0027220197 scopus 로고
    • Conformational coupling in DNA polymerase fidelity
    • 54. Johnson KA: Conformational coupling in DNA polymerase fidelity. Annu Rev Biochem 1993, 62:685-713.
    • (1993) Annu Rev Biochem , vol.62 , pp. 685-713
    • Johnson, K.A.1
  • 56
    • 0027848722 scopus 로고
    • Multi-stage proofreading in DNA replication
    • 56. Beckman RA, Loeb LA: Multi-stage proofreading in DNA replication. O Rev Biophys 1993, 26:225-331.
    • (1993) O Rev Biophys , vol.26 , pp. 225-331
    • Beckman, R.A.1    Loeb, L.A.2
  • 57
    • 0030924437 scopus 로고    scopus 로고
    • Hydrogen bonding revisited: Geometric selection as a principal determinant of DNA replication fidelity
    • 57. Goodman MF: Hydrogen bonding revisited: geometric selection as a principal determinant of DNA replication fidelity. Proc Natl Acad Sci USA 1997, 94:10493-10495.
    • (1997) Proc Natl Acad Sci USA , vol.94 , pp. 10493-10495
    • Goodman, M.F.1
  • 58
    • 0031917762 scopus 로고    scopus 로고
    • DNA polymerase fidelity: From genetics toward a biochemical understanding
    • 58. Goodman MF, Fygenson KD: DNA polymerase fidelity: from genetics toward a biochemical understanding. Genetics 1998, 148:1475-1482.
    • (1998) Genetics , vol.148 , pp. 1475-1482
    • Goodman, M.F.1    Fygenson, K.D.2
  • 59
    • 0017904673 scopus 로고
    • D(M6ATP) as a probe of the fidelity of base incorporation into polynucleotides by Escherichia coli DNA polymerase I
    • 59. Engel JD, von Hippel PH: D(M6ATP) as a probe of the fidelity of base incorporation into polynucleotides by Escherichia coli DNA polymerase I. J Biol Chem 1978, 253:935-939.
    • (1978) J Biol Chem , vol.253 , pp. 935-939
    • Engel, J.D.1    Von Hippel, P.H.2
  • 60
    • 0023690149 scopus 로고
    • The fidelity of base selection by the polymerase subunit of DNA polymerase III holoenzyme
    • 60. Sloane DL, Goodman MF, Echols H: The fidelity of base selection by the polymerase subunit of DNA polymerase III holoenzyme. Nucleic Acids Res 1988, 16:6465-6475.
    • (1988) Nucleic Acids Res , vol.16 , pp. 6465-6475
    • Sloane, D.L.1    Goodman, M.F.2    Echols, H.3
  • 61
    • 0002724139 scopus 로고
    • The role of induced fit and conformational changes of enzymes in specificity and catalysis
    • 61. Herschlag D: The role of induced fit and conformational changes of enzymes in specificity and catalysis. Bioorg Chemistry 1988, 16:62-96.
    • (1988) Bioorg Chemistry , vol.16 , pp. 62-96
    • Herschlag, D.1
  • 62
    • 0028839740 scopus 로고
    • Reexamination of induced fit as a determinant of substrate specificity in enzymatic reactions
    • 62. Post CB, Ray WJ Jr: Reexamination of induced fit as a determinant of substrate specificity in enzymatic reactions. Biochemistry 1995, 34:15881-15885.
    • (1995) Biochemistry , vol.34 , pp. 15881-15885
    • Post, C.B.1    Ray W.J., Jr.2
  • 63
    • 0000619168 scopus 로고
    • Comparison of nucleotide interactions in water, proteins, and vacuum: Model for DNA polymerase fidelity
    • 63. Petruska J, Sowers LC, Goodman MF: Comparison of nucleotide interactions in water, proteins, and vacuum: model for DNA polymerase fidelity. Proc Natl Acad Sci USA 1986, 83:1559-1562.
    • (1986) Proc Natl Acad Sci USA , vol.83 , pp. 1559-1562
    • Petruska, J.1    Sowers, L.C.2    Goodman, M.F.3
  • 64
    • 0031792598 scopus 로고    scopus 로고
    • Efficient replication between non-hydrogen bonded nucleoside shape analogues
    • in press
    • 64. Morales JC, Kool ET: Efficient replication between non-hydrogen bonded nucleoside shape analogues. Nat Struct Biol 1998, in press. The Klenow fragment of E. coli DNA polymerase I selectively incorporates a deoxyribonucleotide of the adenine-shaped mimic 4-methylbenzimidazole (compound Z) opposite the thymine analog difluorotoluene (compound F), which is located in the template strand. Thus, the polymerase recognizes the shape of the nonpolar Z-F base pair, despite a lack of Watson-Crick hydrogen bonds. Conversely, the nucleoside monophosphate of compound F is incorporated opposite a templating Z, in preference to any of the four naturally occurring deoxyribonucleotides.
    • (1998) Nat Struct Biol
    • Morales, J.C.1    Kool, E.T.2
  • 65
    • 0032502024 scopus 로고    scopus 로고
    • Effects of mutations on the partitioning of DNA substrates between the polymerase and 3′-5′ exonuclease sites of DNA polymerase I (Klenow fragment)
    • 65. Lam WC, Van der Schans EJ, Joyce CM, Millar DP: Effects of mutations on the partitioning of DNA substrates between the polymerase and 3′-5′ exonuclease sites of DNA polymerase I (Klenow fragment). Biochemistry 1998, 37:1513-1522. Residues affecting the partitioning of DNA between the polymerase and exonuclease active sites of the Klenow fragment were identified by time-resolved fluorescence spectroscopy of mutant polymerases with residue substitutions in the exonuclease domain.
    • (1998) Biochemistry , vol.37 , pp. 1513-1522
    • Lam, W.C.1    Van Der Schans, E.J.2    Joyce, C.M.3    Millar, D.P.4
  • 66
    • 0028892405 scopus 로고
    • Dynamics of bacteriophage T4 DNA polymerase function: Identification of amino acid residues that affect switching between polymerase and 3′→5′ exonuclease activities
    • 66. Stocki SA, Nonay RL, Reha-Krantz LJ: Dynamics of bacteriophage T4 DNA polymerase function: identification of amino acid residues that affect switching between polymerase and 3′→5′ exonuclease activities. J Mol Biol 1995, 254:15-28.
    • (1995) J Mol Biol , vol.254 , pp. 15-28
    • Stocki, S.A.1    Nonay, R.L.2    Reha-Krantz, L.J.3
  • 67
    • 0025121103 scopus 로고
    • Identification of residues critical for the polymerase activity of the Klenow fragment of DNA polymerase I from Escherichia coli
    • 67. Polesky AH, Steitz TA, Grindley ND, Joyce CM: Identification of residues critical for the polymerase activity of the Klenow fragment of DNA polymerase I from Escherichia coli. J Biol Chem 1990, 265:14579-14591.
    • (1990) J Biol Chem , vol.265 , pp. 14579-14591
    • Polesky, A.H.1    Steitz, T.A.2    Grindley, N.D.3    Joyce, C.M.4
  • 68
    • 0023665251 scopus 로고
    • Escherichia coli thioredoxin confers processivity on the DNA polymerase activity of the gene 5 protein of bacteriophage T7
    • 68. Tabor S, Huber HE, Richardson CC: Escherichia coli thioredoxin confers processivity on the DNA polymerase activity of the gene 5 protein of bacteriophage T7. J Biol Chem 1987, 262:16212-16223.
    • (1987) J Biol Chem , vol.262 , pp. 16212-16223
    • Tabor, S.1    Huber, H.E.2    Richardson, C.C.3
  • 69
    • 0022999280 scopus 로고
    • Interaction of mutant thioredoxins of Escherichia coli with the gene 5 protein of phage T7. The redox capacity of thioredoxin is not required for stimulation of DNA polymerase activity
    • 69. Huber HE, Russel M, Model P, Richardson CC: Interaction of mutant thioredoxins of Escherichia coli with the gene 5 protein of phage T7. The redox capacity of thioredoxin is not required for stimulation of DNA polymerase activity. J Biol Chem 1986, 261:15006-15012.
    • (1986) J Biol Chem , vol.261 , pp. 15006-15012
    • Huber, H.E.1    Russel, M.2    Model, P.3    Richardson, C.C.4
  • 70
    • 0023665337 scopus 로고
    • Escherichia coli thioredoxin stabilizes complexes of bacteriophage T7 DNA polymerase and primed templates
    • 70. Huber HE, Tabor S, Richardson CC: Escherichia coli thioredoxin stabilizes complexes of bacteriophage T7 DNA polymerase and primed templates. J Biol Chem 1987, 262:16224-16232.
    • (1987) J Biol Chem , vol.262 , pp. 16224-16232
    • Huber, H.E.1    Tabor, S.2    Richardson, C.C.3
  • 71
    • 0030889914 scopus 로고    scopus 로고
    • Amino acid changes in a unique sequence of bacteriophage T7 DNA polymerase alter the processivity of nucleotide polymerization
    • 71. Yang XM, Richardson CC: Amino acid changes in a unique sequence of bacteriophage T7 DNA polymerase alter the processivity of nucleotide polymerization. J Biol Chem 1997, 272:6599-6606.
    • (1997) J Biol Chem , vol.272 , pp. 6599-6606
    • Yang, X.M.1    Richardson, C.C.2
  • 72
    • 0031030318 scopus 로고    scopus 로고
    • The thioredoxin binding domain of bacteriophage T7 DNA polymerase confers processivity on Escherichia coli DNA polymerase I
    • 72. Bedford E, Tabor S, Richardson CC: The thioredoxin binding domain of bacteriophage T7 DNA polymerase confers processivity on Escherichia coli DNA polymerase I. Proc Natl Acad Sci USA 1997, 94:479-484. The Klenow fragment was rendered more processive in the presence of thioredoxin after grafting the thioredoxin-binding domain of T7 DNA polymerase onto the tip of its thumb subdomain. The processivity function is portable and is mainly localized to this small domain.
    • (1997) Proc Natl Acad Sci USA , vol.94 , pp. 479-484
    • Bedford, E.1    Tabor, S.2    Richardson, C.C.3
  • 73
    • 0025253822 scopus 로고
    • The Herpes simplex virus type 1 UL42 gene product: A subunit of DNA polymerase that functions to increase processivity
    • 73. Gottlieb J, Marcy Al, Coen DM, Challberg MD: The Herpes simplex virus type 1 UL42 gene product: a subunit of DNA polymerase that functions to increase processivity. J Virol 1990, 64:5976-5987.
    • (1990) J Virol , vol.64 , pp. 5976-5987
    • Gottlieb, J.1    Marcy, A.2    Coen, D.M.3    Challberg, M.D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.