메뉴 건너뛰기




Volumn 17, Issue , 2014, Pages 49-87

PREDICTING PHONON PROPERTIES FROM EQUILIBRIUM MOLECULAR DYNAMICS SIMULATIONS

Author keywords

anharmonicity; lattice dynamics calculations; normal mode decomposition; phonon lifetime; vibrational modes in disordered systems; virtual crystal approximation

Indexed keywords

LATTICE VIBRATIONS; MOLECULAR DYNAMICS; PHONONS;

EID: 85162827433     PISSN: 10490787     EISSN: 23750294     Source Type: Book Series    
DOI: 10.1615/AnnualRevHeatTransfer.2013006915     Document Type: Chapter
Times cited : (103)

References (137)
  • 2
    • 0039073371 scopus 로고
    • Thermal conductivity of rare gas crystals: The role of three-phonon processes
    • M. Omini and A. Sparavigna, Thermal conductivity of rare gas crystals: The role of three-phonon processes, Philos. Mag. B, 68:767–785, 1993.
    • (1993) Philos. Mag. B , vol.68 , pp. 767-785
    • Omini, M.1    Sparavigna, A.2
  • 3
    • 0000086158 scopus 로고    scopus 로고
    • Beyond the isotropic assumption in the theory of thermal conductivity
    • M. Omini and A. Sparavigna, Beyond the isotropic assumption in the theory of thermal conductivity, Phys. Rev. B, 53:9064–9073, 1996.
    • (1996) Phys. Rev. B , vol.53 , pp. 9064-9073
    • Omini, M.1    Sparavigna, A.2
  • 4
    • 0000586648 scopus 로고    scopus 로고
    • Thermal conductivity of dielectric solids with diamond structure
    • M. Omini and A. Sparavigna, Thermal conductivity of dielectric solids with diamond structure, Nuovo Cimento D, 19:1537, 1997.
    • (1997) Nuovo Cimento D , vol.19 , pp. 1537
    • Omini, M.1    Sparavigna, A.2
  • 5
    • 0037764099 scopus 로고    scopus 로고
    • Role of nonpairwise interactions on phonon thermal transport
    • A. Sparavigna, Role of nonpairwise interactions on phonon thermal transport, Phys. Rev. B, 67:144305, 2003.
    • (2003) Phys. Rev. B , vol.67 , pp. 144305
    • Sparavigna, A.1
  • 6
    • 33749158953 scopus 로고    scopus 로고
    • Lattice thermal conductivity of silicon from empirical interatomic potentials
    • D. A. Broido, A. Ward, and N. Mingo, Lattice thermal conductivity of silicon from empirical interatomic potentials, Phys. Rev. B, 72:014308, 2005.
    • (2005) Phys. Rev. B , vol.72 , pp. 014308
    • Broido, D. A.1    Ward, A.2    Mingo, N.3
  • 7
    • 36849003894 scopus 로고    scopus 로고
    • Intrinsic Lattice Thermal Conductivity of Semiconductors from First Principles
    • D. A. Broido, M. Maloney, G. Birner, N. Mingo, and D. Stewart, Intrinsic Lattice Thermal Conductivity of Semiconductors from First Principles, Appl. Phys. Lett., 91:231922, 2007.
    • (2007) Appl. Phys. Lett , vol.91 , pp. 231922
    • Broido, D. A.1    Maloney, M.2    Birner, G.3    Mingo, N.4    Stewart, D.5
  • 8
    • 70350721849 scopus 로고    scopus 로고
    • Lattice thermal conductivity of single-walled carbon nanotubes: Beyond the relaxation time approximation and phonon-phonon scattering selection rules
    • L. Lindsay, D. A. Broido, and N. Mingo, Lattice thermal conductivity of single-walled carbon nanotubes: Beyond the relaxation time approximation and phonon-phonon scattering selection rules, Phys. Rev. B, 80:125407, 2009.
    • (2009) Phys. Rev. B , vol.80 , pp. 125407
    • Lindsay, L.1    Broido, D. A.2    Mingo, N.3
  • 9
    • 77954874813 scopus 로고    scopus 로고
    • Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge
    • A. Ward and D. A. Broido, Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge, Phys. Rev. B, 81:085205, 2010.
    • (2010) Phys. Rev. B , vol.81 , pp. 085205
    • Ward, A.1    Broido, D. A.2
  • 10
    • 77955748985 scopus 로고    scopus 로고
    • Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene
    • L. Lindsay and D. A. Broido, Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene, Phys. Rev. B, 81:205441, 2010.
    • (2010) Phys. Rev. B , vol.81 , pp. 205441
    • Lindsay, L.1    Broido, D. A.2
  • 11
    • 78049391968 scopus 로고    scopus 로고
    • Evaluation of computational techniques for solving the Boltzmann transport equation for lattice thermal conductivity calculations
    • A. Chernatynskiy and S. R. Phillpot, Evaluation of computational techniques for solving the Boltzmann transport equation for lattice thermal conductivity calculations, Phys. Rev. B, 82:134301, 2010.
    • (2010) Phys. Rev. B , vol.82 , pp. 134301
    • Chernatynskiy, A.1    Phillpot, S. R.2
  • 13
    • 81355136100 scopus 로고    scopus 로고
    • Spectral phonon conduction and dominant scattering pathways in graphene
    • D. Singh, J. Y. Murthy, and T. S. Fisher, Spectral phonon conduction and dominant scattering pathways in graphene, J. Appl. Phys., 110:094312, 2011.
    • (2011) J. Appl. Phys , vol.110 , pp. 094312
    • Singh, D.1    Murthy, J. Y.2    Fisher, T. S.3
  • 14
    • 33749364468 scopus 로고
    • Scattering of Neutrons by an Anharmonic Crystal
    • A. A. Maradudin and A. E. Fein, Scattering of Neutrons by an Anharmonic Crystal, Phys. Rev., 128:2589–2608, 1962.
    • (1962) Phys. Rev , vol.128 , pp. 2589-2608
    • Maradudin, A. A.1    Fein, A. E.2
  • 15
    • 33846925064 scopus 로고
    • Phonon-frequency distributions and heat capacities of aluminum and lead
    • R. Stedman, L. Almqvist, and G. Nilsson, Phonon-frequency distributions and heat capacities of aluminum and lead, Phys. Rev., 162:549–557, 1967.
    • (1967) Phys. Rev , vol.162 , pp. 549-557
    • Stedman, R.1    Almqvist, L.2    Nilsson, G.3
  • 16
    • 0001187459 scopus 로고
    • Temperature Dependence of Raman Scattering in Silicon
    • T. R. Hart, R. L. Aggarwal, and B. Lax, Temperature Dependence of Raman Scattering in Silicon, Phys. Rev. B, 1:638–642, 1970.
    • (1970) Phys. Rev. B , vol.1 , pp. 638-642
    • Hart, T. R.1    Aggarwal, R. L.2    Lax, B.3
  • 17
    • 34548216859 scopus 로고    scopus 로고
    • Frequency dependence of the thermal conductivity of semiconductor alloys
    • Y. K. Koh and D. G. Cahill, Frequency dependence of the thermal conductivity of semiconductor alloys, Phys. Rev. B, 76:075207, 2007.
    • (2007) Phys. Rev. B , vol.76 , pp. 075207
    • Koh, Y. K.1    Cahill, D. G.2
  • 18
    • 72449198443 scopus 로고    scopus 로고
    • Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams
    • M. E. Siemens, Q. Li, R. Yang, K. A. Nelson, E. H. Anderson, M. M. Murnane, and H. C. Kapteyn, Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams, Nat. Mater., 9:26–30, 2010.
    • (2010) Nat. Mater , vol.9 , pp. 26-30
    • Siemens, M. E.1    Li, Q.2    Yang, R.3    Nelson, K. A.4    Anderson, E. H.5    Murnane, M. M.6    Kapteyn, H. C.7
  • 20
    • 84875793617 scopus 로고    scopus 로고
    • Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance
    • K. Regner, D. P. Sellan, Z. Su, C. H. Amon, A. J. H. McGaughey, and J. A. Malen, Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance, Nat. Commun., 4:1640, 2013.
    • (2013) Nat. Commun , vol.4 , pp. 1640
    • Regner, K.1    Sellan, D. P.2    Su, Z.3    Amon, C. H.4    McGaughey, A. J. H.5    Malen, J. A.6
  • 23
    • 84875787125 scopus 로고    scopus 로고
    • Thermal conductivity of nanostructured thermoelectric materials
    • D. M. Rowe, Ed., Baton Rouge, Taylor & Francis, Baton Rouge, 42-1–42-11
    • C. Dames and G. Chen, Thermal conductivity of nanostructured thermoelectric materials, in D. M. Rowe, Ed., Thermoelectrics Handbook: Macro to Nano, Baton Rouge, Taylor & Francis, Baton Rouge, pp. 42-1–42-11, 2005.
    • (2005) Thermoelectrics Handbook: Macro to Nano
    • Dames, C.1    Chen, G.2
  • 24
    • 3342959328 scopus 로고
    • The scattering of low-frequency lattice waves by static imperfections
    • P. G. Klemens, The scattering of low-frequency lattice waves by static imperfections, P. Roy. Soc. A, 68:1113–1128, 1955.
    • (1955) P. Roy. Soc. A , vol.68 , pp. 1113-1128
    • Klemens, P. G.1
  • 25
    • 33645966586 scopus 로고
    • Model for lattice thermal conductivity at low temperatures
    • J. Callaway, Model for lattice thermal conductivity at low temperatures, Phys. Rev., 113:1046, 1959.
    • (1959) Phys. Rev , vol.113 , pp. 1046
    • Callaway, J.1
  • 26
    • 36149027857 scopus 로고
    • Analysis of lattice thermal conductivity
    • M. G. Holland, Analysis of lattice thermal conductivity, Phys. Rev., 132:2461, 1963.
    • (1963) Phys. Rev , vol.132 , pp. 2461
    • Holland, M. G.1
  • 27
    • 0037821169 scopus 로고
    • Nonmetallic crystals with high thermal conductivity
    • G. A. Slack, Nonmetallic crystals with high thermal conductivity, J. Phys. Chem. Solids, 34:321–335, 1973.
    • (1973) J. Phys. Chem. Solids , vol.34 , pp. 321-335
    • Slack, G. A.1
  • 28
    • 3242715641 scopus 로고    scopus 로고
    • Role of phonon dispersion in lattice thermal conductivity analysis
    • J. D. Chung, A. J. H. McGaughey, and M. Kaviany, Role of phonon dispersion in lattice thermal conductivity analysis, J. Heat Transf., 126:376–380, 2004.
    • (2004) J. Heat Transf , vol.126 , pp. 376-380
    • Chung, J. D.1    McGaughey, A. J. H.2    Kaviany, M.3
  • 30
    • 42649083997 scopus 로고    scopus 로고
    • Method to extract anharmonic force constants from first principles calculations
    • K. Esfarjani and H. T. Stokes, Method to extract anharmonic force constants from first principles calculations, Phys. Rev. B, 77:144112, 2008.
    • (2008) Phys. Rev. B , vol.77 , pp. 144112
    • Esfarjani, K.1    Stokes, H. T.2
  • 33
    • 0002547944 scopus 로고
    • G. K. Horton and A. A. Maradudin, Eds., Crystalline Solids, Fundamentals, Elsevier, New York
    • A. A. Maradudin, In G. K. Horton and A. A. Maradudin, Eds., Dynamical Properties of Solids, Volume 1. Crystalline Solids, Fundamentals, Elsevier, New York, pp. 1–82, 1974.
    • (1974) Dynamical Properties of Solids , vol.1 , pp. 1-82
    • Maradudin, A. A.1
  • 36
    • 0008932443 scopus 로고
    • Lattice thermal conductivity: A comparison of molecular dynamics and anharmonic lattice dynamics
    • A. J. C. Ladd, B. Moran, and W. G. Hoover, Lattice thermal conductivity: A comparison of molecular dynamics and anharmonic lattice dynamics, Phys. Rev. B, 34:5058–5064, 1986.
    • (1986) Phys. Rev. B , vol.34 , pp. 5058-5064
    • Ladd, A. J. C.1    Moran, B.2    Hoover, W. G.3
  • 37
    • 61949101430 scopus 로고    scopus 로고
    • Predicting phonon properties and thermal conductivity from anharmonic lattice dynamics calculations and molecular dynamics simulations
    • J. E. Turney, E. S. Landry, A. J. H. McGaughey, and C. H. Amon, Predicting phonon properties and thermal conductivity from anharmonic lattice dynamics calculations and molecular dynamics simulations, Phys. Rev. B, 79:064301, 2009.
    • (2009) Phys. Rev. B , vol.79 , pp. 064301
    • Turney, J. E.1    Landry, E. S.2    McGaughey, A. J. H.3    Amon, C. H.4
  • 38
    • 70350655600 scopus 로고    scopus 로고
    • Ab initio theory of the lattice thermal conductivity in diamond
    • A. Ward, D. A. Broido, D. A. Stewart, and G. Deinzer, Ab initio theory of the lattice thermal conductivity in diamond, Phys. Rev. B, 80:125203, 2009.
    • (2009) Phys. Rev. B , vol.80 , pp. 125203
    • Ward, A.1    Broido, D. A.2    Stewart, D. A.3    Deinzer, G.4
  • 39
    • 80052186834 scopus 로고    scopus 로고
    • Heat transport in silicon from first-principles calculations
    • K. Esfarjani, G. Chen, and H. T. Stokes, Heat transport in silicon from first-principles calculations, Phys. Rev. B, 84:085204, 2011.
    • (2011) Phys. Rev. B , vol.84 , pp. 085204
    • Esfarjani, K.1    Chen, G.2    Stokes, H. T.3
  • 40
    • 79251513979 scopus 로고    scopus 로고
    • Role of disorder and anharmonicity in the thermal conductivity of silicon-germanium alloys: A first-principles study
    • J. Garg, N. Bonini, B. Kozinsky, and N. Marzari, Role of disorder and anharmonicity in the thermal conductivity of silicon-germanium alloys: A first-principles study, Phys. Rev. Lett., 106:045901, 2011.
    • (2011) Phys. Rev. Lett , vol.106 , pp. 045901
    • Garg, J.1    Bonini, N.2    Kozinsky, B.3    Marzari, N.4
  • 41
    • 80053609184 scopus 로고    scopus 로고
    • Thermal conductivity of half-Heusler compounds from first-principles calculations
    • J. Shiomi, K. Esfarjani, and G. Chen, Thermal conductivity of half-Heusler compounds from first-principles calculations, Phys. Rev. B, 84:104302, 2011.
    • (2011) Phys. Rev. B , vol.84 , pp. 104302
    • Shiomi, J.1    Esfarjani, K.2    Chen, G.3
  • 42
    • 84865581604 scopus 로고    scopus 로고
    • Thermal conductivity and large isotope effect in GaN from first principles
    • L. Lindsay, D. A. Broido, and T. L. Reinecke, Thermal conductivity and large isotope effect in GaN from first principles, Phys. Rev. Lett., 109:095901, 2012.
    • (2012) Phys. Rev. Lett , vol.109 , pp. 095901
    • Lindsay, L.1    Broido, D. A.2    Reinecke, T. L.3
  • 45
    • 84872977328 scopus 로고    scopus 로고
    • Gallium arsenide thermal conductivity and optical phonon relaxation times from first-principles calculations
    • T. Luo, J. Garg, J. Shiomi, K. Esfarjani, and G. Chen, Gallium arsenide thermal conductivity and optical phonon relaxation times from first-principles calculations, Europhys. Lett., 101:16001, 2013.
    • (2013) Europhys. Lett , vol.101 , pp. 16001
    • Luo, T.1    Garg, J.2    Shiomi, J.3    Esfarjani, K.4    Chen, G.5
  • 46
    • 2142657913 scopus 로고    scopus 로고
    • Quantitative validation of the boltzmann transport equation phonon thermal conductivity model under the single-mode relaxation time approximation
    • A. J. H. McGaughey and M. Kaviany, Quantitative validation of the boltzmann transport equation phonon thermal conductivity model under the single-mode relaxation time approximation, Phys. Rev. B, 69:094303, 2004.
    • (2004) Phys. Rev. B , vol.69 , pp. 094303
    • McGaughey, A. J. H.1    Kaviany, M.2
  • 49
    • 4243754961 scopus 로고
    • Computer simulation of local order in condensed phases of silicon
    • F. H. Stillinger and T. A. Weber, Computer simulation of local order in condensed phases of silicon, Phys. Rev. B, 31:5262–5271, 1985.
    • (1985) Phys. Rev. B , vol.31 , pp. 5262-5271
    • Stillinger, F. H.1    Weber, T. A.2
  • 50
    • 16444366630 scopus 로고
    • New empirical approach for the structure and energy of covalent systems
    • J. Tersoff, New empirical approach for the structure and energy of covalent systems, Phys. Rev. B, 37:6991–7000, 1988.
    • (1988) Phys. Rev. B , vol.37 , pp. 6991-7000
    • Tersoff, J.1
  • 54
    • 35348918708 scopus 로고    scopus 로고
    • Phonon transport in molecular dynamics simulations: Formulation and thermal conductivity prediction
    • G. A. Greene, Y. I. Cho, J. P. Hartnett, and A. Bar-Cohen, Eds., Academic Press, London
    • A. J. H. McGaughey and M. Kaviany, Phonon transport in molecular dynamics simulations: Formulation and thermal conductivity prediction, in G. A. Greene, Y. I. Cho, J. P. Hartnett, and A. Bar-Cohen, Eds., Advances in Heat Transfer, Volume 39, Academic Press, London, pp. 169–255, 2006.
    • (2006) Advances in Heat Transfer , vol.39 , pp. 169-255
    • McGaughey, A. J. H.1    Kaviany, M.2
  • 55
    • 0036537725 scopus 로고    scopus 로고
    • Comparison of atomic-level simulation methods for computing thermal conductivity
    • P. K. Schelling, S. R. Phillpot, and P. Keblinski, Comparison of atomic-level simulation methods for computing thermal conductivity, Phys. Rev. B, 65:144306, 2002.
    • (2002) Phys. Rev. B , vol.65 , pp. 144306
    • Schelling, P. K.1    Phillpot, S. R.2    Keblinski, P.3
  • 56
    • 84871215124 scopus 로고    scopus 로고
    • Comparison of molecular dynamics methods and interatomic potentials for calculating the thermal conductivity of silicon
    • P. C. Howell, Comparison of molecular dynamics methods and interatomic potentials for calculating the thermal conductivity of silicon, J. Chem. Phys., 137:224111, 2012.
    • (2012) J. Chem. Phys , vol.137 , pp. 224111
    • Howell, P. C.1
  • 57
    • 79956013196 scopus 로고    scopus 로고
    • Phonon wave-packet dynamics at semiconductor interfaces by molecular-dynamics simulation
    • P. K. Schelling, S. R. Phillpot, and P. Keblinski, Phonon wave-packet dynamics at semiconductor interfaces by molecular-dynamics simulation, Appl. Phys. Lett., 80:2484–2486, 2002.
    • (2002) Appl. Phys. Lett , vol.80 , pp. 2484-2486
    • Schelling, P. K.1    Phillpot, S. R.2    Keblinski, P.3
  • 58
    • 84866887122 scopus 로고    scopus 로고
    • Application of the wavelet transform to nanoscale thermal transport
    • C. H. Baker, D. A. Jordan, and P. M. Norris, Application of the wavelet transform to nanoscale thermal transport, Phys. Rev. B, 86:104306, 2012.
    • (2012) Phys. Rev. B , vol.86 , pp. 104306
    • Baker, C. H.1    Jordan, D. A.2    Norris, P. M.3
  • 60
    • 68949083840 scopus 로고    scopus 로고
    • Assessing the applicability of quantum corrections to classical thermal conductivity predictions
    • J. E. Turney, A. J. H. McGaughey, and C. H. Amon, Assessing the applicability of quantum corrections to classical thermal conductivity predictions, Phys. Rev. B, 79:224305, 2009.
    • (2009) Phys. Rev. B , vol.79 , pp. 224305
    • Turney, J. E.1    McGaughey, A. J. H.2    Amon, C. H.3
  • 61
    • 43449099165 scopus 로고    scopus 로고
    • Complex superlattice unit cell designs for reduced thermal conductivity
    • E. S. Landry, M. I. Hussein, and A. J. H. McGaughey, Complex superlattice unit cell designs for reduced thermal conductivity, Phys. Rev. B, 77:184302, 2008.
    • (2008) Phys. Rev. B , vol.77 , pp. 184302
    • Landry, E. S.1    Hussein, M. I.2    McGaughey, A. J. H.3
  • 62
    • 63149109174 scopus 로고    scopus 로고
    • Towards more accurate molecular dynamics calculation of thermal conductivity: Case study of GaN bulk crystals
    • X. W. Zhou, S. Aubry, R. E. Jones, A. Greenstein, and P. K. Schelling, Towards more accurate molecular dynamics calculation of thermal conductivity: Case study of GaN bulk crystals, Phys. Rev. B, 79:115201, 2009.
    • (2009) Phys. Rev. B , vol.79 , pp. 115201
    • Zhou, X. W.1    Aubry, S.2    Jones, R. E.3    Greenstein, A.4    Schelling, P. K.5
  • 63
    • 77950937922 scopus 로고    scopus 로고
    • How to improve the accuracy of equilibrium molecular dynamics for computation of thermal conductivity?
    • J. Chen, G. Zhang, and B. Li, How to improve the accuracy of equilibrium molecular dynamics for computation of thermal conductivity?, Phys. Lett. A, 374:2392–2396, 2010.
    • (2010) Phys. Lett. A , vol.374 , pp. 2392-2396
    • Chen, J.1    Zhang, G.2    Li, B.3
  • 65
    • 84856922866 scopus 로고    scopus 로고
    • Thermal conductivity calculation with the molecular dynamics direct method I: More robust simulations of solid materials
    • P. C. Howell, Thermal conductivity calculation with the molecular dynamics direct method I: More robust simulations of solid materials, J. Comput. Theor. Nanos., 8:2129–2143, 2011.
    • (2011) J. Comput. Theor. Nanos , vol.8 , pp. 2129-2143
    • Howell, P. C.1
  • 66
    • 84856868368 scopus 로고    scopus 로고
    • Thermal conductivity calculation with the molecular dynamics direct method II: Improving the computational efficiency
    • P. C. Howell, Thermal conductivity calculation with the molecular dynamics direct method II: Improving the computational efficiency, J. Comput.Theor. Nanos., 8:2144–2154, 2011.
    • (2011) J. Comput.Theor. Nanos , vol.8 , pp. 2144-2154
    • Howell, P. C.1
  • 67
    • 84869401457 scopus 로고    scopus 로고
    • Lattice thermal conductivity of semiconducting bulk materials: Atomistic simulations
    • Y. He, I. Savic, D. Donadio, and G. Galli, Lattice thermal conductivity of semiconducting bulk materials: Atomistic simulations, Phys. Chem. Chem. Phys., 14:16209–16222, 2012.
    • (2012) Phys. Chem. Chem. Phys , vol.14 , pp. 16209-16222
    • He, Y.1    Savic, I.2    Donadio, D.3    Galli, G.4
  • 68
    • 84860149495 scopus 로고    scopus 로고
    • Adaptive Green-Kubo estimates of transport coefficients from molecular dynamics based on robust error analysis
    • R. E. Jones and K. K. Mandadapu, Adaptive Green-Kubo estimates of transport coefficients from molecular dynamics based on robust error analysis, J. Chem. Phys., 136:154102, 2012.
    • (2012) J. Chem. Phys , vol.136 , pp. 154102
    • Jones, R. E.1    Mandadapu, K. K.2
  • 69
    • 1642578902 scopus 로고    scopus 로고
    • Thermal conductivity decomposition and analysis using molecular dynamics simulations. Part I. Lennard-Jones argon
    • A. J. H. McGaughey and M. Kaviany, Thermal conductivity decomposition and analysis using molecular dynamics simulations. Part I. Lennard-Jones argon, Int. J. Heat Mass Transfer, 47:1783–1798, 2004.
    • (2004) Int. J. Heat Mass Transfer , vol.47 , pp. 1783-1798
    • McGaughey, A. J. H.1    Kaviany, M.2
  • 70
    • 1642538372 scopus 로고    scopus 로고
    • Thermal conductivity decomposition and analysis using molecular dynamics simulations. Part II. Complex silica structures
    • A. J. H. McGaughey and M. Kaviany, Thermal conductivity decomposition and analysis using molecular dynamics simulations. Part II. Complex silica structures, Int. J. Heat Mass Tran., 47:1799–1816, 2004.
    • (2004) Int. J. Heat Mass Tran , vol.47 , pp. 1799-1816
    • McGaughey, A. J. H.1    Kaviany, M.2
  • 71
    • 84859343932 scopus 로고    scopus 로고
    • One-dimensional phonon effects in direct molecular dynamics method for thermal conductivity determination
    • L. Hu, W. J. Evans, and P. Keblinski, One-dimensional phonon effects in direct molecular dynamics method for thermal conductivity determination, J. Appl. Phys., 110:113511, 2011.
    • (2011) J. Appl. Phys , vol.110 , pp. 113511
    • Hu, L.1    Evans, W. J.2    Keblinski, P.3
  • 72
    • 84857203490 scopus 로고    scopus 로고
    • Nanostructure thermal conductivity prediction by Monte Carlo sampling of phonon free paths
    • A. J. H. McGaughey and A. Jain, Nanostructure thermal conductivity prediction by Monte Carlo sampling of phonon free paths, Appl. Phys. Lett., 100:061911, 2012.
    • (2012) Appl. Phys. Lett , vol.100 , pp. 061911
    • McGaughey, A. J. H.1    Jain, A.2
  • 73
    • 84867497942 scopus 로고    scopus 로고
    • An alternative approach to efficient simulation of micro/nanoscale phonon transport
    • J.-P. M. Péraud and N. G. Hadjiconstantinou, An alternative approach to efficient simulation of micro/nanoscale phonon transport, Appl. Phys. Lett., 101:153114, 2012.
    • (2012) Appl. Phys. Lett , vol.101 , pp. 153114
    • Péraud, J.-P. M.1    Hadjiconstantinou, N. G.2
  • 74
    • 44449090563 scopus 로고    scopus 로고
    • Quantum thermal transport in nanostructures
    • J.-S. Wang, J. Wang, and J. T. Li, Quantum thermal transport in nanostructures, Eur. Phys. J. B, 62:381–404, 2008.
    • (2008) Eur. Phys. J. B , vol.62 , pp. 381-404
    • Wang, J.-S.1    Wang, J.2    Li, J. T.3
  • 77
    • 33748616559 scopus 로고    scopus 로고
    • GULP: A computer program for the symmetry-adapted simulation of solids
    • J. D. Gale, GULP: A computer program for the symmetry-adapted simulation of solids, J. Chem. Soc. Faraday Trans., 93:629–637, 1997.
    • (1997) J. Chem. Soc. Faraday Trans , vol.93 , pp. 629-637
    • Gale, J. D.1
  • 78
    • 0242341371 scopus 로고    scopus 로고
    • The General Utility Lattice Program (GULP)
    • J. D. Gale and A. L. Rohl, The General Utility Lattice Program (GULP), Mol. Simulat., 29:291–341, 2003.
    • (2003) Mol. Simulat , vol.29 , pp. 291-341
    • Gale, J. D.1    Rohl, A. L.2
  • 79
    • 20144372774 scopus 로고    scopus 로고
    • GULP: Capabilities and prospects
    • J. D. Gale, GULP: Capabilities and prospects, Z. Kristallogr., 220:552–554, 2005.
    • (2005) Z. Kristallogr , vol.220 , pp. 552-554
    • Gale, J. D.1
  • 80
    • 0002467378 scopus 로고
    • Fast parallel algorithms for short-range molecular dynamics
    • S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 117:1–19, 1995.
    • (1995) J. Comput. Phys , vol.117 , pp. 1-19
    • Plimpton, S.1
  • 81
    • 84861022092 scopus 로고    scopus 로고
    • Computational aspects of many-body potentials
    • S. Plimpton and A. P. Thompson, Computational aspects of many-body potentials, MRS Bull., 37:513–521, 2012.
    • (2012) MRS Bull , vol.37 , pp. 513-521
    • Plimpton, S.1    Thompson, A. P.2
  • 84
    • 0033355502 scopus 로고    scopus 로고
    • Determination of the Ioffe-Regel limit for vibrational excitations in disordered materials
    • S. N. Taraskin and S. R. Elliott, Determination of the Ioffe-Regel limit for vibrational excitations in disordered materials, Philos. Mag. B, 79:1747–1754, 1999.
    • (1999) Philos. Mag. B , vol.79 , pp. 1747-1754
    • Taraskin, S. N.1    Elliott, S. R.2
  • 86
    • 77952644049 scopus 로고    scopus 로고
    • Thermal properties for bulk silicon based on the determination of relaxation times using molecular dynamics
    • J. V. Goicochea, M. Madrid, and C. H. Amon, Thermal properties for bulk silicon based on the determination of relaxation times using molecular dynamics, J. Heat Transf., 132:012401, 2010.
    • (2010) J. Heat Transf , vol.132 , pp. 012401
    • Goicochea, J. V.1    Madrid, M.2    Amon, C. H.3
  • 87
    • 45149132245 scopus 로고    scopus 로고
    • Thermal resistivity of Si–Ge alloys by molecular-dynamics simulation
    • A. Skye and P. K. Schelling, Thermal resistivity of Si–Ge alloys by molecular-dynamics simulation, J. Appl. Phys., 103:113524, 2008.
    • (2008) J. Appl. Phys , vol.103 , pp. 113524
    • Skye, A.1    Schelling, P. K.2
  • 88
    • 28344442970 scopus 로고    scopus 로고
    • Thermal conductivity of epitaxial layers of dilute SiGe alloys
    • D. G. Cahill, F. Watanabe, A. Rockett, and C. B. Vining, Thermal conductivity of epitaxial layers of dilute SiGe alloys, Phys. Rev. B, 71:235202, 2005.
    • (2005) Phys. Rev. B , vol.71 , pp. 235202
    • Cahill, D. G.1    Watanabe, F.2    Rockett, A.3    Vining, C. B.4
  • 89
    • 36149027789 scopus 로고
    • Lattice Thermal Conductivity of disordered semiconductor alloys at high temperatures
    • B. Abeles, Lattice Thermal Conductivity of disordered semiconductor alloys at high temperatures, Phys. Rev., 131:1906–1911, 1963.
    • (1963) Phys. Rev , vol.131 , pp. 1906-1911
    • Abeles, B.1
  • 90
    • 0033311240 scopus 로고    scopus 로고
    • Diffusons, locons, and propagons: Character of atomic vibrations in amorphous Si
    • P. B. Allen, J. L. Feldman, J. Fabian, and F. Wooten, Diffusons, locons, and propagons: Character of atomic vibrations in amorphous Si, Philos. Mag. B, 79:1715–1731, 1999.
    • (1999) Philos. Mag. B , vol.79 , pp. 1715-1731
    • Allen, P. B.1    Feldman, J. L.2    Fabian, J.3    Wooten, F.4
  • 91
    • 0001149093 scopus 로고
    • Thermal conductivity of disordered harmonic solids
    • P. B. Allen and J. L. Feldman, Thermal conductivity of disordered harmonic solids, Phys. Rev. B, 48:12581–12588, 1993.
    • (1993) Phys. Rev. B , vol.48 , pp. 12581-12588
    • Allen, P. B.1    Feldman, J. L.2
  • 92
    • 0001230361 scopus 로고
    • Thermal conductivity and localization in glasses: Numerical study of a model of amorphous silicon
    • J. L. Feldman, M. D. Kluge, P. B. Allen, and F. Wooten, Thermal conductivity and localization in glasses: Numerical study of a model of amorphous silicon, Phys. Rev. B, 48:12589–12602, 1993.
    • (1993) Phys. Rev. B , vol.48 , pp. 12589-12602
    • Feldman, J. L.1    Kluge, M. D.2    Allen, P. B.3    Wooten, F.4
  • 93
    • 60449098878 scopus 로고    scopus 로고
    • Predicting the thermal conductivity of inorganic and polymeric glasses: The role of anharmonicity
    • S. Shenogin, A. Bodapati, P. Keblinski, and A. J. H. McGaughey, Predicting the thermal conductivity of inorganic and polymeric glasses: The role of anharmonicity, J. Appl. Phys., 105:034906, 2009.
    • (2009) J. Appl. Phys , vol.105 , pp. 034906
    • Shenogin, S.1    Bodapati, A.2    Keblinski, P.3    McGaughey, A. J. H.4
  • 94
    • 79954476475 scopus 로고    scopus 로고
    • Heat transport in amorphous silicon: Interplay between morphology and disorder
    • Y. He, D. Donadio, and G. Galli, Heat transport in amorphous silicon: Interplay between morphology and disorder, Appl. Phys. Lett., 98:144101, 2011.
    • (2011) Appl. Phys. Lett , vol.98 , pp. 144101
    • He, Y.1    Donadio, D.2    Galli, G.3
  • 95
    • 70349267554 scopus 로고    scopus 로고
    • Thermal conductivity of MgO periclase from equilibrium first principles molecular dynamics
    • N. de Koker, Thermal conductivity of MgO periclase from equilibrium first principles molecular dynamics, Phys. Rev. Lett., 103:125902, 2009.
    • (2009) Phys. Rev. Lett , vol.103 , pp. 125902
    • de Koker, N.1
  • 96
    • 77954883831 scopus 로고    scopus 로고
    • Predicting phonon dispersion relations and lifetimes from the spectral energy density
    • J. A. Thomas, J. E. Turney, R. M. Iutzi, C. H. Amon, and A. J. H. McGaughey, Predicting phonon dispersion relations and lifetimes from the spectral energy density, Phys. Rev. B, 81:081411, 2010.
    • (2010) Phys. Rev. B , vol.81 , pp. 081411
    • Thomas, J. A.1    Turney, J. E.2    Iutzi, R. M.3    Amon, C. H.4    McGaughey, A. J. H.5
  • 97
    • 80054757638 scopus 로고    scopus 로고
    • Molecular dynamics simulations of lattice thermal conductivity and spectral phonon mean free path of PbTe: Bulk and nanostructures
    • B. Qiu, H. Bao, G. Zhang, Y. Wu, and X. Ruan, Molecular dynamics simulations of lattice thermal conductivity and spectral phonon mean free path of PbTe: Bulk and nanostructures, Comput. Mater. Sci., 53:278–285, 2012.
    • (2012) Comput. Mater. Sci , vol.53 , pp. 278-285
    • Qiu, B.1    Bao, H.2    Zhang, G.3    Wu, Y.4    Ruan, X.5
  • 98
    • 80455129570 scopus 로고    scopus 로고
    • Reduction of phonon lifetimes and thermal conductivity of a carbon nanotube on amorphous silica
    • Z.-Y. Ong, E. Pop, and J. Shiomi, Reduction of phonon lifetimes and thermal conductivity of a carbon nanotube on amorphous silica, Phys. Rev. B, 84:165418, 2011.
    • (2011) Phys. Rev. B , vol.84 , pp. 165418
    • Ong, Z.-Y.1    Pop, E.2    Shiomi, J.3
  • 99
    • 84865844551 scopus 로고    scopus 로고
    • Thermal transport in graphene supported on copper
    • L. Chen and S. Kumar, Thermal transport in graphene supported on copper, J. Appl. Phys., 112:043502, 2012.
    • (2012) J. Appl. Phys , vol.112 , pp. 043502
    • Chen, L.1    Kumar, S.2
  • 100
    • 0041751651 scopus 로고    scopus 로고
    • A molecular dynamics simulation of heat conduction of a finite length single-walled carbon nanotube
    • S. Maruyama, A molecular dynamics simulation of heat conduction of a finite length single-walled carbon nanotube, Microscale Therm. Eng., 7:41–50, 2003.
    • (2003) Microscale Therm. Eng , vol.7 , pp. 41-50
    • Maruyama, S.1
  • 101
    • 47149105630 scopus 로고    scopus 로고
    • Spectral phonon transport properties of silicon based on molecular dynamics simulations and lattice dynamics
    • A. S. Henry and G. Chen, Spectral phonon transport properties of silicon based on molecular dynamics simulations and lattice dynamics, J. Comput. Theor. Nanos., 5:1–12, 2008.
    • (2008) J. Comput. Theor. Nanos , vol.5 , pp. 1-12
    • Henry, A. S.1    Chen, G.2
  • 103
    • 49749094444 scopus 로고    scopus 로고
    • Full-spectrum phonon relaxation times in crystalline Si from molecular dynamics simulations
    • H. Zhao and J. B. Freund, Full-spectrum phonon relaxation times in crystalline Si from molecular dynamics simulations, J. Appl. Phys., 104:033514, 2008.
    • (2008) J. Appl. Phys , vol.104 , pp. 033514
    • Zhao, H.1    Freund, J. B.2
  • 104
    • 84859625592 scopus 로고    scopus 로고
    • Mode-dependent phonon transport analysis of silicon crystal by molecular dynamics method
    • T. Hori, T. Shiga, S. Maruyama, and J. Shiomi, Mode-dependent phonon transport analysis of silicon crystal by molecular dynamics method, T. Jpn. Soc. Mech. Eng., 78:328–337, 2012.
    • (2012) T. Jpn. Soc. Mech. Eng , vol.78 , pp. 328-337
    • Hori, T.1    Shiga, T.2    Maruyama, S.3    Shiomi, J.4
  • 106
    • 84861526580 scopus 로고    scopus 로고
    • A first-principles molecular dynamics approach for predicting optical phonon lifetimes and far-infrared reflectance of polar materials
    • H. Bao, B. Qiu, Y. Zhang, and X. Ruan, A first-principles molecular dynamics approach for predicting optical phonon lifetimes and far-infrared reflectance of polar materials, J. Quant. Spectrosc. Radiat., 113:1683–1688, 2012.
    • (2012) J. Quant. Spectrosc. Radiat , vol.113 , pp. 1683-1688
    • Bao, H.1    Qiu, B.2    Zhang, Y.3    Ruan, X.4
  • 107
    • 65649094403 scopus 로고    scopus 로고
    • Atomistic simulations of heat transport in silicon nanowires
    • D. Donadio and G. Galli, Atomistic simulations of heat transport in silicon nanowires, Phys. Rev. Lett., 102:195901, 2009.
    • (2009) Phys. Rev. Lett , vol.102 , pp. 195901
    • Donadio, D.1    Galli, G.2
  • 108
    • 37549011354 scopus 로고    scopus 로고
    • Thermal conductivity of isolated and interacting carbon nanotubes: Comparing results from molecular dynamics and the Boltzmann transport equation
    • D. Donadio and G. Galli, Thermal conductivity of isolated and interacting carbon nanotubes: Comparing results from molecular dynamics and the Boltzmann transport equation, Phys. Rev. Lett., 99:255502, 2007.
    • (2007) Phys. Rev. Lett , vol.99 , pp. 255502
    • Donadio, D.1    Galli, G.2
  • 109
    • 46049087717 scopus 로고    scopus 로고
    • Phonon interactions in zeolites mediated by anharmonicity and adsorbed molecules
    • C.-Y. Chen and D. I. Kopelevich, Phonon interactions in zeolites mediated by anharmonicity and adsorbed molecules, Mol. Simulat., 34:155–167, 2008.
    • (2008) Mol. Simulat , vol.34 , pp. 155-167
    • Chen, C.-Y.1    Kopelevich, D. I.2
  • 110
    • 57349134385 scopus 로고    scopus 로고
    • High thermal conductivity of single polyethylene chains using molecular dynamics simulations
    • A. Henry and G. Chen, High thermal conductivity of single polyethylene chains using molecular dynamics simulations, Phys. Rev. Lett., 101:235502, 2008.
    • (2008) Phys. Rev. Lett , vol.101 , pp. 235502
    • Henry, A.1    Chen, G.2
  • 111
    • 66149189444 scopus 로고    scopus 로고
    • Anomalous heat conduction in polyethylene chains: Theory and molecular dynamics simulations
    • A. Henry and G. Chen, Anomalous heat conduction in polyethylene chains: Theory and molecular dynamics simulations, Phys. Rev. B, 79:144305, 2009.
    • (2009) Phys. Rev. B , vol.79 , pp. 144305
    • Henry, A.1    Chen, G.2
  • 112
    • 78650810672 scopus 로고    scopus 로고
    • Phonon quasiparticles and anharmonic perturbation theory tested by molecular dynamics on a model system
    • T. Sun, X. Shen, and P. B. Allen, Phonon quasiparticles and anharmonic perturbation theory tested by molecular dynamics on a model system, Phys. Rev. B, 82:224304, 2010.
    • (2010) Phys. Rev. B , vol.82 , pp. 224304
    • Sun, T.1    Shen, X.2    Allen, P. B.3
  • 113
    • 78650820355 scopus 로고    scopus 로고
    • Lattice thermal conductivity: Computations and theory of the high-temperature breakdown of the phonon-gas model
    • T. Sun and P. B. Allen, Lattice thermal conductivity: Computations and theory of the high-temperature breakdown of the phonon-gas model, Phys. Rev. B, 82:224305, 2010.
    • (2010) Phys. Rev. B , vol.82 , pp. 224305
    • Sun, T.1    Allen, P. B.2
  • 114
    • 70349484657 scopus 로고    scopus 로고
    • Explicit treatment of hydrogen atoms in thermal simulations of polyetylene
    • A. Henry and G. Chen, Explicit treatment of hydrogen atoms in thermal simulations of polyetylene, Nanoscale Microsc. Therm., 13:99–108, 2009.
    • (2009) Nanoscale Microsc. Therm , vol.13 , pp. 99-108
    • Henry, A.1    Chen, G.2
  • 115
    • 0000856591 scopus 로고
    • Thermal conductivity of α-Si:H thin films
    • D. G. Cahill, M. Katiyar, and J. R. Abelson, Thermal conductivity of α-Si:H thin films, Phys. Rev. B, 50:6077–6081, 1994.
    • (1994) Phys. Rev. B , vol.50 , pp. 6077-6081
    • Cahill, D. G.1    Katiyar, M.2    Abelson, J. R.3
  • 116
    • 79952904922 scopus 로고    scopus 로고
    • Thermal transport in nanoporous silicon: Interplay between disorder at mesoscopic and atomic scales
    • Y. He, D. Donadio, J.-H. Lee, J. C. Grossman, and G. Galli, Thermal transport in nanoporous silicon: Interplay between disorder at mesoscopic and atomic scales, ACS Nano, 5:1839–1844, 2011.
    • (2011) ACS Nano , vol.5 , pp. 1839-1844
    • He, Y.1    Donadio, D.2    Lee, J.-H.3    Grossman, J. C.4    Galli, G.5
  • 117
    • 0001129497 scopus 로고    scopus 로고
    • Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well
    • A. Balandin and K. L. Wang, Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well, Phys. Rev. B, 58:1544–1549, 1998.
    • (1998) Phys. Rev. B , vol.58 , pp. 1544-1549
    • Balandin, A.1    Wang, K. L.2
  • 118
    • 0242595934 scopus 로고    scopus 로고
    • Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations
    • N. Mingo, Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations, Phys. Rev. B, 68:113308, 2003.
    • (2003) Phys. Rev. B , vol.68 , pp. 113308
    • Mingo, N.1
  • 119
    • 64149110758 scopus 로고    scopus 로고
    • Impact of phonon-surface roughness scattering on thermal conductivity of thin Si nanowires
    • P. Martin, Z. Aksamija, E. Pop, and U. Ravaioli, Impact of phonon-surface roughness scattering on thermal conductivity of thin Si nanowires, Phys. Rev. Lett., 102:125503, 2009.
    • (2009) Phys. Rev. Lett , vol.102 , pp. 125503
    • Martin, P.1    Aksamija, Z.2    Pop, E.3    Ravaioli, U.4
  • 120
    • 77957909092 scopus 로고    scopus 로고
    • Reduction of thermal conductivity in phononic nanomesh structures
    • J.-K. Yu, S. Mitrovic, D. Tham, J. Varghese, and J. R. Heath, Reduction of thermal conductivity in phononic nanomesh structures, Nat. Nanotechnol., 5:718–721, 2010.
    • (2010) Nat. Nanotechnol , vol.5 , pp. 718-721
    • Yu, J.-K.1    Mitrovic, S.2    Tham, D.3    Varghese, J.4    Heath, J. R.5
  • 121
    • 84877915364 scopus 로고    scopus 로고
    • Phonon transport in periodic silicon nanoporous films with feature sizes greater than 100 nm
    • A. Jain, Y.-J. Yu, and A. J. H. McGaughey, Phonon transport in periodic silicon nanoporous films with feature sizes greater than 100 nm, Phys. Rev. B, 87:195301, 2013.
    • (2013) Phys. Rev. B , vol.87 , pp. 195301
    • Jain, A.1    Yu, Y.-J.2    McGaughey, A. J. H.3
  • 122
    • 33745958034 scopus 로고
    • Isotope scattering of dispersive phonons in Ge
    • S. Tamura, Isotope scattering of dispersive phonons in Ge, Phys. Rev. B, 27:858–866, 1983.
    • (1983) Phys. Rev. B , vol.27 , pp. 858-866
    • Tamura, S.1
  • 124
    • 0035422243 scopus 로고    scopus 로고
    • Monte Carlo study of phonon transport in solid thin films including dispersion and polarization
    • S. Mazumder and A. Majumdar, Monte Carlo study of phonon transport in solid thin films including dispersion and polarization, J. Heat Transf., 123:749–759, 2001.
    • (2001) J. Heat Transf , vol.123 , pp. 749-759
    • Mazumder, S.1    Majumdar, A.2
  • 125
    • 82755177358 scopus 로고    scopus 로고
    • Efficient simulation of multidimensional phonon transport using energy-based variance-reduced Monte Carlo formulations
    • J.-P. M. Péraud and N. G. Hadjiconstantinou, Efficient simulation of multidimensional phonon transport using energy-based variance-reduced Monte Carlo formulations, Phys. Rev. B, 84:205331, 2011.
    • (2011) Phys. Rev. B , vol.84 , pp. 205331
    • Péraud, J.-P. M.1    Hadjiconstantinou, N. G.2
  • 126
    • 79956153185 scopus 로고    scopus 로고
    • On the lattice Boltzmann method for phonon transport
    • A. Nabovati, D. P. Sellan, and C. H. Amon, On the lattice Boltzmann method for phonon transport, J. Comput. Phys., 230:5864–5876, 2011.
    • (2011) J. Comput. Phys , vol.230 , pp. 5864-5876
    • Nabovati, A.1    Sellan, D. P.2    Amon, C. H.3
  • 127
    • 2942657507 scopus 로고    scopus 로고
    • Kapitza conductance and phonon scattering at grain boundaries by simulation
    • P. K. Schelling, S. R. Phillpot, and P. Keblinski, Kapitza conductance and phonon scattering at grain boundaries by simulation, J. Appl. Phys., 95:6082–6091, 2004.
    • (2004) J. Appl. Phys , vol.95 , pp. 6082-6091
    • Schelling, P. K.1    Phillpot, S. R.2    Keblinski, P.3
  • 128
    • 19944431314 scopus 로고    scopus 로고
    • Lattice-dynamical calculation of phonon scattering at ideal Si-Ge interfaces
    • H. Zhao and J. B. Freund, Lattice-dynamical calculation of phonon scattering at ideal Si-Ge interfaces, J. Appl. Phys., 97:024903, 2005.
    • (2005) J. Appl. Phys , vol.97 , pp. 024903
    • Zhao, H.1    Freund, J. B.2
  • 129
    • 34248393399 scopus 로고    scopus 로고
    • Effects of temperature and disorder on thermal boundary conductance at solid solid interfaces: Nonequilibrium molecular dynamics simulations
    • R. J. Stevens, L. V. Zhigilei, and P. M. Norris, Effects of temperature and disorder on thermal boundary conductance at solid solid interfaces: Nonequilibrium molecular dynamics simulations, Int. J. Heat Mass Transfer, 50:3977–3989, 2007.
    • (2007) Int. J. Heat Mass Transfer , vol.50 , pp. 3977-3989
    • Stevens, R. J.1    Zhigilei, L. V.2    Norris, P. M.3
  • 130
    • 72849116760 scopus 로고    scopus 로고
    • Thermal boundary resistance predictions from molecular dynamics simulations and theoretical calculations
    • E. S. Landry and A. J. H. McGaughey, Thermal boundary resistance predictions from molecular dynamics simulations and theoretical calculations, Phys. Rev. B, 80:165304, 2009.
    • (2009) Phys. Rev. B , vol.80 , pp. 165304
    • Landry, E. S.1    McGaughey, A. J. H.2
  • 131
    • 84861179774 scopus 로고    scopus 로고
    • Thermal interface conductance in Si/Ge superlattices by equilibrium molecular dynamics
    • Y. Chalopin, K. Esfarjani, A. Henry, S. Volz, and G. Chen, Thermal interface conductance in Si/Ge superlattices by equilibrium molecular dynamics, Phys. Rev. B, 85:195302, 2012.
    • (2012) Phys. Rev. B , vol.85 , pp. 195302
    • Chalopin, Y.1    Esfarjani, K.2    Henry, A.3    Volz, S.4    Chen, G.5
  • 132
    • 84866082363 scopus 로고    scopus 로고
    • Thermal conductance at the interface between crystals using equilibrium and nonequilibrium molecular dynamics
    • S. Merabia and K. Termentzidis, Thermal conductance at the interface between crystals using equilibrium and nonequilibrium molecular dynamics, Phys. Rev. B, 86:094303, 2012.
    • (2012) Phys. Rev. B , vol.86 , pp. 094303
    • Merabia, S.1    Termentzidis, K.2
  • 133
    • 84871068654 scopus 로고    scopus 로고
    • Enhancing phonon transmission across a Si/Ge interface by atomic roughness: First-principles study with the Green’s function method
    • Z. Tian, K. Esfarjani, and G. Chen, Enhancing phonon transmission across a Si/Ge interface by atomic roughness: First-principles study with the Green’s function method, Phys. Rev. B, 86:235304, 2012.
    • (2012) Phys. Rev. B , vol.86 , pp. 235304
    • Tian, Z.1    Esfarjani, K.2    Chen, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.