메뉴 건너뛰기




Volumn , Issue , 2010, Pages 3610-3617

Sufficient dimension reduction for visual sequence classification

Author keywords

[No Author keywords available]

Indexed keywords

DEGREES OF FREEDOM; DIMENSIONALITY REDUCTION; DYNAMIC TEXTURES; EXISTING METHOD; HIGH-DIMENSIONAL; HUMAN GESTURES; INPUT DATAS; KERNEL DIMENSION; LOW-DIMENSIONAL REPRESENTATION; NEIGHBORHOOD GRAPHS; OUTPUT VALUES; OVERFITTING; SEQUENCE CLASSIFICATION; SEQUENCE DATA; SUFFICIENT DIMENSION REDUCTION; TRAINING DATA;

EID: 77956002956     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2010.5539922     Document Type: Conference Paper
Times cited : (25)

References (19)
  • 2
    • 29144453489 scopus 로고    scopus 로고
    • A unifying view of sparse approximate Gaussian process regression
    • J. Candela and C. Rasmussen. A unifying view of sparse approximate Gaussian process regression. Journal of Machine Learning Research, 6:1935-1959, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1935-1959
    • Candela, J.1    Rasmussen, C.2
  • 3
    • 84963804119 scopus 로고    scopus 로고
    • 3-D articulated pose tracking for untethered deictic reference
    • D. Demirdjian and T. Darrell. 3-D articulated pose tracking for untethered deictic reference. In ICMI, 2002.
    • (2002) ICMI
    • Demirdjian, D.1    Darrell, T.2
  • 4
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • R. Fisher. The use of multiple measurements in taxonomic problems. Annals Eugen., 7:179-188, 1936.
    • (1936) Annals Eugen. , vol.7 , pp. 179-188
    • Fisher, R.1
  • 5
    • 68649121147 scopus 로고    scopus 로고
    • Kernel dimension reduction in regression
    • K. Fukumizu, F. Bach, and M. Jordan. Kernel dimension reduction in regression. Annals of Statistics, 37:1871-1905, 2009.
    • (2009) Annals of Statistics , vol.37 , pp. 1871-1905
    • Fukumizu, K.1    Bach, F.2    Jordan, M.3
  • 7
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML, 2001.
    • (2001) ICML
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 8
    • 27844605876 scopus 로고    scopus 로고
    • Probabilistic non-linear principal component analysis with Gaussian process latent variable models
    • N. Lawrence. Probabilistic non-linear principal component analysis with Gaussian process latent variable models. Journal of Machine Learning Research, 6:1783-1816, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1783-1816
    • Lawrence, N.1
  • 9
    • 84945116550 scopus 로고
    • Sliced inverse regression for dimension reduction
    • K.-C. Li. Sliced inverse regression for dimension reduction. J. Amer. Statist. Assoc., 86:316-327, 1991.
    • (1991) J. Amer. Statist. Assoc. , vol.86 , pp. 316-327
    • Li, K.-C.1
  • 10
    • 77956006009 scopus 로고    scopus 로고
    • DynTex. http://old-www.cwi.nl/projects/dyntex/database.html.
    • DynTex
  • 11
    • 77955988651 scopus 로고    scopus 로고
    • Mocap. http://mocap.cs.cmu.edu.
  • 12
    • 17544388116 scopus 로고    scopus 로고
    • Adaptive view-based appearance model
    • L. Morency, A. Rahimi, and T. Darrell. Adaptive view-based appearance model. In CVPR, 2003.
    • (2003) CVPR
    • Morency, L.1    Rahimi, A.2    Darrell, T.3
  • 13
    • 70349375765 scopus 로고    scopus 로고
    • Regression on manifolds using kernel dimension reduction
    • J. Nilsson, F. Sha, and M. Jordan. Regression on manifolds using kernel dimension reduction. In ICML, 2007.
    • (2007) ICML
    • Nilsson, J.1    Sha, F.2    Jordan, M.3
  • 14
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290:2323-2326, 2000.
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 15
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J. Tenenbaum, V. Silva, and J. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290:2319-2323, 2000.
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.1    Silva, V.2    Langford, J.3
  • 16
    • 14344250451 scopus 로고    scopus 로고
    • Support vector machine learning for interdependent and structured output spaces
    • I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine learning for interdependent and structured output spaces. In ICML, 2004.
    • (2004) ICML
    • Tsochantaridis, I.1    Hofmann, T.2    Joachims, T.3    Altun, Y.4
  • 17
    • 78650301922 scopus 로고    scopus 로고
    • Discriminative Gaussian process latent variable models for classification
    • R. Urtasun and T. Darrell. Discriminative Gaussian process latent variable models for classification. In ICML, 2007.
    • (2007) ICML
    • Urtasun, R.1    Darrell, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.