메뉴 건너뛰기




Volumn , Issue , 2010, Pages

Approximate inference in continuous time Gaussian-Jump processes

Author keywords

[No Author keywords available]

Indexed keywords

FREE ENERGY; GAUSSIAN DISTRIBUTION; MARKOV PROCESSES; STOCHASTIC SYSTEMS;

EID: 85162005633     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (12)

References (18)
  • 6
    • 65549151303 scopus 로고    scopus 로고
    • Switching regulatory models of cellular stress response
    • Guido Sanguinetti, Andreas Ruttor, Manfred Opper, and Cedric Archambeau. Switching regulatory models of cellular stress response. Bioinformatics, 25(10):1280-1286, 2009.
    • (2009) Bioinformatics , vol.25 , Issue.10 , pp. 1280-1286
    • Sanguinetti, G.1    Ruttor, A.2    Opper, M.3    Archambeau, C.4
  • 10
    • 71449088236 scopus 로고    scopus 로고
    • Efficient statistical inference for stochastic reaction processes
    • Andreas Ruttor and Manfred Opper. Efficient statistical inference for stochastic reaction processes. Phys. Rev. Lett., 103(23), 2009.
    • (2009) Phys. Rev. Lett. , vol.103 , pp. 23
    • Ruttor, A.1    Opper, M.2
  • 11
    • 84867884505 scopus 로고    scopus 로고
    • Approximate inference for continuous-time Markov processes
    • David Barber, Taylan Cemgil, and Silvia Chiappa, editors, Cambridge, University Press
    • Cedric Archambeau and Manfred Opper. Approximate inference for continuous-time Markov processes. In David Barber, Taylan Cemgil, and Silvia Chiappa, editors, Inference and Learning in Dynamic Models. Cambridge University Press, 2010.
    • (2010) Inference and Learning in Dynamic Models
    • Archambeau, C.1    Opper, M.2
  • 13
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K. Saul. An introduction to variational methods for graphical models. Machine Learning, 37:183-233, 1999.
    • (1999) Machine Learning , vol.37 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.S.3    Saul, L.K.4
  • 14
    • 77954202683 scopus 로고    scopus 로고
    • Learning combinatorial transcriptional dynamics from gene expression data
    • Manfred Opper and Guido Sanguinetti. Learning combinatorial transcriptional dynamics from gene expression data. Bioinformatics, 26(13):1623-1629, 2010.
    • (2010) Bioinformatics , vol.26 , Issue.13 , pp. 1623-1629
    • Opper, M.1    Sanguinetti, G.2
  • 15
    • 33845270980 scopus 로고    scopus 로고
    • Expectation correction for smoothing in switching linear Gaussian state space models
    • David Barber. Expectation correction for smoothing in switching linear Gaussian state space models. Journal of Machine Learning Research, 7:2515-2540, 2006.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2515-2540
    • Barber, D.1
  • 17
    • 33745038921 scopus 로고    scopus 로고
    • Ranked prediction of p53 targets using hidden variable dynamical modelling
    • Martino Barenco, Daniela Tomescu, David Brewer, Robin Callard, Jaroslav Stark, and Michael Hubank. Ranked prediction of p53 targets using hidden variable dynamical modelling. Genome Biology, 7(3), 2006.
    • (2006) Genome Biology , vol.7 , pp. 3
    • Barenco, M.1    Tomescu, D.2    Brewer, D.3    Callard, R.4    Stark, J.5    Hubank, M.6
  • 18
    • 33645293152 scopus 로고    scopus 로고
    • An excitable gene regulatory circuit induces transient cellular differentiation
    • Gürol M. Suël, Jordi Garcia-Ojalvo, Louisa M. Liberman, and Michael B. Elowitz. An excitable gene regulatory circuit induces transient cellular differentiation. Nature, 440:545-50, 2006.
    • (2006) Nature , vol.440 , pp. 545-550
    • Suël, G.M.1    Garcia-Ojalvo, J.2    Liberman, L.M.3    Elowitz, M.B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.