메뉴 건너뛰기




Volumn 25, Issue 3, 2009, Pages

On the performance of algorithms for the minimization of ℓ1-penalized functionals

Author keywords

[No Author keywords available]

Indexed keywords

FUNCTIONALS; ILL CONDITIONED PROBLEMS; ISOCHRONES; MINIMIZATION ALGORITHMS; PENALIZED LEAST-SQUARES; PENALTY PARAMETERS; PERFORMANCE OF ALGORITHM;

EID: 67650414322     PISSN: 02665611     EISSN: 13616420     Source Type: Journal    
DOI: 10.1088/0266-5611/25/3/035008     Document Type: Article
Times cited : (65)

References (17)
  • 2
    • 7044231546 scopus 로고    scopus 로고
    • An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
    • Daubechies I, Defrise M and De Mol C 2004 An iterative thresholding algorithm for linear inverse problems with a sparsity constraint Commun. Pure Appl. Math. 57 1413-57
    • (2004) Commun. Pure Appl. Math. , vol.57 , pp. 1413-1457
    • Daubechies, I.1    Defrise, M.2    De Mol, C.3
  • 3
    • 0008988926 scopus 로고
    • Linear inversion of band-limited reflection seismograms
    • Santosa F and Symes W W 1986 Linear inversion of band-limited reflection seismograms SIAM J. Sci. Stat. Comput. 7 1307-30
    • (1986) SIAM J. Sci. Stat. Comput. , vol.7 , pp. 1307-1330
    • Santosa, F.1    Symes, W.W.2
  • 4
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R 1996 Regression shrinkage and selection via the lasso J. R. Stat. Soc. B 58 267-88
    • (1996) J. R. Stat. Soc. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 5
    • 57349127864 scopus 로고    scopus 로고
    • Accelerated projected gradient method for linear inverse problems with sparsity constraints
    • Daubechies I, Fornasier M and Loris I 2008 Accelerated projected gradient method for linear inverse problems with sparsity constraints J. Fourier Anal. Appl. 14 764-92
    • (2008) J. Fourier Anal. Appl. , vol.14 , pp. 764-792
    • Daubechies, I.1    Fornasier, M.2    Loris, I.3
  • 7
    • 39449126969 scopus 로고    scopus 로고
    • Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems
    • Special Issue on Convex Optimization Methods for Signal Processing
    • Figueiredo M A T, Nowak R D and Wright S J 2008 Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems IEEE J. Sel. Top. Signal Process. (Special Issue on Convex Optimization Methods for Signal Processing) 1 586-98
    • (2008) IEEE J. Sel. Top. Signal Process. , vol.1 , pp. 586-598
    • Figueiredo, M.A.T.1    Nowak, R.D.2    Wright, S.J.3
  • 8
    • 70350301626 scopus 로고    scopus 로고
    • 1-regularized minimization with applications to compressed sensing
    • Rice University
    • 1-regularized minimization with applications to compressed sensing Technical Report Rice University
    • (2007) Technical Report
    • Hale, E.T.1    Yin, W.2    Zhang, Y.3
  • 9
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • at press
    • Beck A and Teboulle M 2009 A fast iterative shrinkage-thresholding algorithm for linear inverse problems SIAM J. Imaging Sci. at press
    • (2009) SIAM J. Imaging Sci.
    • Beck, A.1    Teboulle, M.2
  • 11
    • 0034215549 scopus 로고    scopus 로고
    • A new approach to variable selection in least squares problems
    • Osborne M R, Presnell B and Turlach B A 2000 A new approach to variable selection in least squares problems IMA J. Numer. Anal. 20 389-403
    • (2000) IMA J. Numer. Anal. , vol.20 , pp. 389-403
    • Osborne, M.R.1    Presnell, B.2    Turlach, B.A.3
  • 15
  • 16
    • 30844438177 scopus 로고    scopus 로고
    • Signal recovery by proximal forward-backward splitting
    • Combettes P L and Wajs V R 2005 Signal recovery by proximal forward-backward splitting Multiscale Model. Simul. 4 1168-200
    • (2005) Multiscale Model. Simul. , vol.4 , pp. 1168-1200
    • Combettes, P.L.1    Wajs, V.R.2
  • 17
    • 0031118954 scopus 로고    scopus 로고
    • Convex set theoretic image recovery by extrapolated iterations of parallel subgradient projections
    • Combettes P L 1997 Convex set theoretic image recovery by extrapolated iterations of parallel subgradient projections IEEE Trans. Image Process. 6 493-506
    • (1997) IEEE Trans. Image Process. , vol.6 , pp. 493-506
    • Combettes, P.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.