메뉴 건너뛰기




Volumn 1, Issue 4, 2021, Pages 444-458

Metabolic engineering of Escherichia coli for efficient ectoine production

Author keywords

Ectoine production; Escherichia coli; PaeAspDH; Precursor accumulation; Rational engineering; Temperature controlled fermentation

Indexed keywords


EID: 85116272802     PISSN: 26627655     EISSN: 26627663     Source Type: Journal    
DOI: 10.1007/s43393-021-00031-1     Document Type: Article
Times cited : (12)

References (38)
  • 1
    • 0021799461 scopus 로고
    • 1,4,5,6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid. A novel cyclic amino acid from halophilic phototrophic bacteria of the genus Ectothiorhodospira
    • COI: 1:CAS:528:DyaL2MXktVegsrs%3D
    • Galinski EA, Pfeiffer HP, Trüper HG. 1,4,5,6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid. A novel cyclic amino acid from halophilic phototrophic bacteria of the genus Ectothiorhodospira. Eur J Biochem. 1985;149:135–9. DOI: 10.1111/j.1432-1033.1985.tb08903.x
    • (1985) Eur J Biochem. , vol.149 , pp. 135-139
    • Galinski, E.A.1    Pfeiffer, H.P.2    Trüper, H.G.3
  • 2
    • 33749031257 scopus 로고    scopus 로고
    • Extremolytes: natural compounds from extremophiles for versatile applications
    • COI: 1:CAS:528:DC%2BD28XpvF2lsr8%3D
    • Lentzen G, Schwarz T. Extremolytes: natural compounds from extremophiles for versatile applications. Appl Microbiol Biotechnol. 2006;72:623–34. DOI: 10.1007/s00253-006-0553-9
    • (2006) Appl Microbiol Biotechnol , vol.72 , pp. 623-634
    • Lentzen, G.1    Schwarz, T.2
  • 3
    • 48449093857 scopus 로고    scopus 로고
    • The multifunctional role of ectoine as a natural cell protectant
    • Graf R, Anzali S, Buenger J, Pfluecker F, Driller H. The multifunctional role of ectoine as a natural cell protectant. Clin Dermatol. 2008;26:326–33. DOI: 10.1016/j.clindermatol.2008.01.002
    • (2008) Clin Dermatol , vol.26 , pp. 326-333
    • Graf, R.1    Anzali, S.2    Buenger, J.3    Pfluecker, F.4    Driller, H.5
  • 4
    • 24044449002 scopus 로고    scopus 로고
    • Ectoine and hydroxyectoine inhibit aggregation and neurotoxicity of Alzheimer's beta-amyloid
    • COI: 1:CAS:528:DC%2BD2MXpt1ertL0%3D
    • Kanapathipillai M, Lentzen G, Sierks M, Park CB. Ectoine and hydroxyectoine inhibit aggregation and neurotoxicity of Alzheimer’s beta-amyloid. FEBS Lett. 2005;579:4775–80. DOI: 10.1016/j.febslet.2005.07.057
    • (2005) FEBS Lett , vol.579 , pp. 4775-4780
    • Kanapathipillai, M.1    Lentzen, G.2    Sierks, M.3    Park, C.B.4
  • 5
    • 85168306610 scopus 로고    scopus 로고
    • The compatible solute ectoine protects against nanoparticle-induced neutrophilic lung inflammation
    • Sydlik U, Weissenberg A, Peuschel H, Krutmann J, Unfried K. The compatible solute ectoine protects against nanoparticle-induced neutrophilic lung inflammation. Toxicol Lett. 2009;189:S188–S188. DOI: 10.1016/j.toxlet.2009.06.653
    • (2009) Toxicol Lett , vol.189 , pp. S188
    • Sydlik, U.1    Weissenberg, A.2    Peuschel, H.3    Krutmann, J.4    Unfried, K.5
  • 6
    • 84876406668 scopus 로고    scopus 로고
    • Novel effects of ectoine, a bacteria-derived natural tetrahydropyrimidine, in experimental colitis
    • COI: 1:CAS:528:DC%2BC3sXjsFyls7s%3D
    • Abdel-Aziz H, Wadie W, Abdallah DM, Lentzen G, Khayyal MT. Novel effects of ectoine, a bacteria-derived natural tetrahydropyrimidine, in experimental colitis. Phytomedicine. 2013;20:585–91. DOI: 10.1016/j.phymed.2013.01.009
    • (2013) Phytomedicine , vol.20 , pp. 585-591
    • Abdel-Aziz, H.1    Wadie, W.2    Abdallah, D.M.3    Lentzen, G.4    Khayyal, M.T.5
  • 7
    • 85044600469 scopus 로고    scopus 로고
    • Role of the extremolytes ectoine and hydroxyectoine as stress protectants and nutrients: genetics, phylogenomics, biochemistry, and structural analysis
    • Czech L, Hermann L, Stöveken N, Richter AA, Höppner A, Smits SHJ, Heider J, Bremer E. Role of the extremolytes ectoine and hydroxyectoine as stress protectants and nutrients: genetics, phylogenomics, biochemistry, and structural analysis. Genes. 2018;9:177. DOI: 10.3390/genes9040177
    • (2018) Genes , vol.9 , pp. 177
    • Czech, L.1    Hermann, L.2    Stöveken, N.3    Richter, A.A.4    Höppner, A.5    Smits, S.H.J.6    Heider, J.7    Bremer, E.8
  • 9
    • 0032485056 scopus 로고    scopus 로고
    • Bacterial milking: a novel bioprocess for production of compatible solutes
    • COI: 1:CAS:528:DyaK1cXmvFGq
    • Sauer T, Galinski EA. Bacterial milking: a novel bioprocess for production of compatible solutes. Biotechnol Bioeng. 1998;57:306–13. DOI: 10.1002/(SICI)1097-0290(19980205)57:3<306::AID-BIT7>3.0.CO;2-L
    • (1998) Biotechnol Bioeng , vol.57 , pp. 306-313
    • Sauer, T.1    Galinski, E.A.2
  • 10
    • 77956235556 scopus 로고    scopus 로고
    • Process optimization of the integrated synthesis and secretion of ectoine and hydroxyectoine under hyper/hypo-osmotic stress
    • COI: 1:CAS:528:DC%2BC3cXptFGltLk%3D
    • Fallet C, Rohe P, Franco-Lara E. Process optimization of the integrated synthesis and secretion of ectoine and hydroxyectoine under hyper/hypo-osmotic stress. Biotechnol Bioeng. 2010;107:124–33. DOI: 10.1002/bit.22750
    • (2010) Biotechnol Bioeng , vol.107 , pp. 124-133
    • Fallet, C.1    Rohe, P.2    Franco-Lara, E.3
  • 11
    • 34249726647 scopus 로고    scopus 로고
    • Continuous synthesis and excretion of the compatible solute ectoine by a transgenic, nonhalophilic bacterium
    • COI: 1:CAS:528:DC%2BD2sXlslSmsr8%3D
    • Schubert T, Maskow T, Benndorf D, Harms H, Breuer U. Continuous synthesis and excretion of the compatible solute ectoine by a transgenic, nonhalophilic bacterium. Appl Environ Microbiol. 2007;73:3343–7. DOI: 10.1128/AEM.02482-06
    • (2007) Appl Environ Microbiol , vol.73 , pp. 3343-3347
    • Schubert, T.1    Maskow, T.2    Benndorf, D.3    Harms, H.4    Breuer, U.5
  • 12
    • 0036094875 scopus 로고    scopus 로고
    • New type of osmoregulated solute transporter identified in halophilic members of the Bacteria domain: TRAP transporter TeaABC mediates uptake of ectoine and hydroxyectoine in Halomonas elongata DSM 2581(T)
    • COI: 1:CAS:528:DC%2BD38XjvVGrsbs%3D
    • Grammann K, Volke A, Kunte HJ. New type of osmoregulated solute transporter identified in halophilic members of the Bacteria domain: TRAP transporter TeaABC mediates uptake of ectoine and hydroxyectoine in Halomonas elongata DSM 2581(T). J Bacteriol. 2002;184:3078–85. DOI: 10.1128/JB.184.11.3078-3085.2002
    • (2002) J Bacteriol , vol.184 , pp. 3078-3085
    • Grammann, K.1    Volke, A.2    Kunte, H.J.3
  • 13
    • 0037018879 scopus 로고    scopus 로고
    • The substrate-binding protein TeaA of the osmoregulated ectoine transporter TeaABC from Halomonas elongata: purification and characterization of recombinant TeaA
    • COI: 1:CAS:528:DC%2BD38XksFyqtbc%3D
    • Tetsch L, Kunte HJ. The substrate-binding protein TeaA of the osmoregulated ectoine transporter TeaABC from Halomonas elongata: purification and characterization of recombinant TeaA. FEMS Microbiol Lett. 2002;211:213–8. DOI: 10.1111/j.1574-6968.2002.tb11227.x
    • (2002) FEMS Microbiol Lett , vol.211 , pp. 213-218
    • Tetsch, L.1    Kunte, H.J.2
  • 14
    • 70349451856 scopus 로고    scopus 로고
    • Efficient production of ectoine using ectoine-excreting strain
    • COI: 1:CAS:528:DC%2BD1MXotFKltbk%3D
    • Zhang L-H, Lang Y-J, Nagata S. Efficient production of ectoine using ectoine-excreting strain. Extremophiles. 2009;13:717–24. DOI: 10.1007/s00792-009-0262-2
    • (2009) Extremophiles , vol.13 , pp. 717-724
    • Zhang, L.-H.1    Lang, Y.-J.2    Nagata, S.3
  • 15
    • 85019466483 scopus 로고    scopus 로고
    • Improved fermentative production of the compatible solute ectoine by Corynebacterium glutamicum from glucose and alternative carbon sources
    • Pérez-García F, Ziert C, Risse JM, Wendisch VF. Improved fermentative production of the compatible solute ectoine by Corynebacterium glutamicum from glucose and alternative carbon sources. J Biotechnol. 2017;258:59–68. DOI: 10.1016/j.jbiotec.2017.04.039
    • (2017) J Biotechnol , vol.258 , pp. 59-68
    • Pérez-García, F.1    Ziert, C.2    Risse, J.M.3    Wendisch, V.F.4
  • 17
    • 85068612518 scopus 로고    scopus 로고
    • Metabolic engineering of Corynebacterium glutamicum for high-level ectoine production: design, combinatorial assembly, and implementation of a transcriptionally balanced heterologous ectoine pathway
    • Giesselmann G, Dietrich D, Jungmann L, Kohlstedt M, Jeon E, Yim SS, Sommer F, Zimmer D, Mühlhaus T, Schroda M, Jeong K, Becker J, Wittmann C. Metabolic engineering of Corynebacterium glutamicum for high-level ectoine production: design, combinatorial assembly, and implementation of a transcriptionally balanced heterologous ectoine pathway. Biotechnol J. 2019;14:e201800417. DOI: 10.1002/biot.201800417
    • (2019) Biotechnol J. , vol.14
    • Giesselmann, G.1    Dietrich, D.2    Jungmann, L.3    Kohlstedt, M.4    Jeon, E.5    Yim, S.S.6    Sommer, F.7    Zimmer, D.8    Mühlhaus, T.9    Schroda, M.10    Jeong, K.11    Becker, J.12    Wittmann, C.13
  • 18
    • 84928266661 scopus 로고    scopus 로고
    • High production of ectoine from aspartate and glycerol by use of whole-cell biocatalysis in recombinant Escherichia coli
    • He Y-Z, Gong J, Yu H-Y, Tao Y, Zhang S, Dong Z-Y. High production of ectoine from aspartate and glycerol by use of whole-cell biocatalysis in recombinant Escherichia coli. Microb Cell Fact. 2015;14:55. DOI: 10.1186/s12934-015-0238-0
    • (2015) Microb Cell Fact , vol.14 , pp. 55
    • He, Y.-Z.1    Gong, J.2    Yu, H.-Y.3    Tao, Y.4    Zhang, S.5    Dong, Z.-Y.6
  • 19
    • 84935854110 scopus 로고    scopus 로고
    • Design of an ectoine-responsive AraC mutant and its application in metabolic engineering of ectoine biosynthesis
    • Chen W, Zhang S, Jiang P, Yao J, He Y, Chen L, Gui X, Dong Z, Tang S-Y. Design of an ectoine-responsive AraC mutant and its application in metabolic engineering of ectoine biosynthesis. Metab Eng. 2015;30:149–55. DOI: 10.1016/j.ymben.2015.05.004
    • (2015) Metab Eng , vol.30 , pp. 149-155
    • Chen, W.1    Zhang, S.2    Jiang, P.3    Yao, J.4    He, Y.5    Chen, L.6    Gui, X.7    Dong, Z.8    Tang, S.-Y.9
  • 20
    • 84960907446 scopus 로고    scopus 로고
    • Pathway construction and metabolic engineering for fermentative production of ectoine in Escherichia coli
    • COI: 1:CAS:528:DC%2BC28XktVOnt74%3D
    • Ning Y, Wu X, Zhang C, Xu Q, Chen N, Xie X. Pathway construction and metabolic engineering for fermentative production of ectoine in Escherichia coli. Metab Eng. 2016;36:10–8. DOI: 10.1016/j.ymben.2016.02.013
    • (2016) Metab Eng , vol.36 , pp. 10-18
    • Ning, Y.1    Wu, X.2    Zhang, C.3    Xu, Q.4    Chen, N.5    Xie, X.6
  • 21
    • 85087394099 scopus 로고    scopus 로고
    • Rational flux-tuning of Halomonas bluephagenesis for co-production of bioplastic PHB and ectoine
    • COI: 1:CAS:528:DC%2BB3cXhtlGms77O
    • Ma H, Zhao Y, Huang W, Zhang L, Wu F, Ye J, Chen G-Q. Rational flux-tuning of Halomonas bluephagenesis for co-production of bioplastic PHB and ectoine. Nat Commun. 2020;11:3313–3313. DOI: 10.1038/s41467-020-17223-3
    • (2020) Nat Commun , vol.11 , pp. 3313
    • Ma, H.1    Zhao, Y.2    Huang, W.3    Zhang, L.4    Wu, F.5    Ye, J.6    Chen, G.-Q.7
  • 22
    • 0036217950 scopus 로고    scopus 로고
    • Regulation of gene expression in the PTS in Escherichia coli: the role and interactions of Mlc
    • COI: 1:CAS:528:DC%2BD38XisV2rtbg%3D
    • Plumbridge J. Regulation of gene expression in the PTS in Escherichia coli: the role and interactions of Mlc. Curr Opin Microbiol. 2002;5:187–93. DOI: 10.1016/S1369-5274(02)00296-5
    • (2002) Curr Opin Microbiol , vol.5 , pp. 187-193
    • Plumbridge, J.1
  • 23
    • 85073825917 scopus 로고    scopus 로고
    • Developing an l-threonine-producing strain from wild-type Escherichia coli by modifying the glucose uptake, glyoxylate shunt, and l-threonine biosynthetic pathway
    • Zhu LF, Fang Y, Ding ZX, Zhang SY, Wang XY. Developing an l-threonine-producing strain from wild-type Escherichia coli by modifying the glucose uptake, glyoxylate shunt, and l-threonine biosynthetic pathway. Biotechnol Appl Biochem. 2019;15:962–76. DOI: 10.1002/bab.1813
    • (2019) Biotechnol Appl Biochem. , vol.15 , pp. 962-976
    • Zhu, L.F.1    Fang, Y.2    Ding, Z.X.3    Zhang, S.Y.4    Wang, X.Y.5
  • 24
    • 85048560653 scopus 로고    scopus 로고
    • Increasing l-threonine production in Escherichia coli by engineering the glyoxylate shunt and the l-threonine biosynthesis pathway
    • COI: 1:CAS:528:DC%2BC1cXos1Wiu7g%3D
    • Zhao H, Fang Y, Wang XY, Zhao L, Wang JL, Li Y. Increasing l-threonine production in Escherichia coli by engineering the glyoxylate shunt and the l-threonine biosynthesis pathway. Appl Microbiol Biotechnol. 2018;102:5505–18. DOI: 10.1007/s00253-018-9024-3
    • (2018) Appl Microbiol Biotechnol , vol.102 , pp. 5505-5518
    • Zhao, H.1    Fang, Y.2    Wang, X.Y.3    Zhao, L.4    Wang, J.L.5    Li, Y.6
  • 25
    • 84930936873 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for the production of 3-aminopropionic acid
    • COI: 1:CAS:528:DC%2BC2MXhtVWrt7nF
    • Song CW, Lee J, Ko Y-S, Lee SY. Metabolic engineering of Escherichia coli for the production of 3-aminopropionic acid. Metab Eng. 2015;30:121–9. DOI: 10.1016/j.ymben.2015.05.005
    • (2015) Metab Eng , vol.30 , pp. 121-129
    • Song, C.W.1    Lee, J.2    Ko, Y.-S.3    Lee, S.Y.4
  • 26
    • 85078433332 scopus 로고    scopus 로고
    • Pathway construction and metabolic engineering for fermentative production of β-alanine in Escherichia coli
    • COI: 1:CAS:528:DC%2BB3cXis1Slur0%3D
    • Zou X, Guo L, Huang L, Li M, Zhang S, Yang A, Zhang Y, Zhu L, Zhang H, Zhang J, Feng Z. Pathway construction and metabolic engineering for fermentative production of β-alanine in Escherichia coli. Appl Microbiol Biotechnol. 2020;104:2545–59. DOI: 10.1007/s00253-020-10359-8
    • (2020) Appl Microbiol Biotechnol , vol.104 , pp. 2545-2559
    • Zou, X.1    Guo, L.2    Huang, L.3    Li, M.4    Zhang, S.5    Yang, A.6    Zhang, Y.7    Zhu, L.8    Zhang, H.9    Zhang, J.10    Feng, Z.11
  • 27
    • 36849002434 scopus 로고    scopus 로고
    • Systems metabolic engineering of Escherichia coli for Kl-threonine production
    • COI: 1:CAS:528:DC%2BD2sXjsVCju78%3D
    • Lee KH, Park JH, Kim TY, Kim HU, Lee SY. Systems metabolic engineering of Escherichia coli for Kl-threonine production. Mol Syst Biol. 2007;3:149–149. DOI: 10.1038/msb4100196
    • (2007) Mol Syst Biol , vol.3 , pp. 149
    • Lee, K.H.1    Park, J.H.2    Kim, T.Y.3    Kim, H.U.4    Lee, S.Y.5
  • 28
    • 79958202386 scopus 로고    scopus 로고
    • A novel l-aspartate dehydrogenase from the mesophilic bacterium Pseudomonas aeruginosa PAO1: molecular characterization and application for l-aspartate production
    • COI: 1:CAS:528:DC%2BC3MXmsFCrt74%3D
    • Li Y, Kawakami N, Ogola HJO, Ashida H, Ishikawa T, Shibata H, Sawa Y. A novel l-aspartate dehydrogenase from the mesophilic bacterium Pseudomonas aeruginosa PAO1: molecular characterization and application for l-aspartate production. Appl Microbiol Biotechnol. 2011;90:1953–62. DOI: 10.1007/s00253-011-3208-4
    • (2011) Appl Microbiol Biotechnol , vol.90 , pp. 1953-1962
    • Li, Y.1    Kawakami, N.2    Ogola, H.J.O.3    Ashida, H.4    Ishikawa, T.5    Shibata, H.6    Sawa, Y.7
  • 29
    • 85020113829 scopus 로고    scopus 로고
    • Current status on metabolic engineering for the production of l-aspartate family amino acids and derivatives
    • COI: 1:CAS:528:DC%2BC2sXovVGqs7g%3D
    • Li YJ, Wei HB, Wang T, Xu QY, Zhang CL, Fan XG, Ma Q, Chen N, Xie XX. Current status on metabolic engineering for the production of l-aspartate family amino acids and derivatives. Bioresour Technol. 2017;245:1588–602. DOI: 10.1016/j.biortech.2017.05.145
    • (2017) Bioresour Technol , vol.245 , pp. 1588-1602
    • Li, Y.J.1    Wei, H.B.2    Wang, T.3    Xu, Q.Y.4    Zhang, C.L.5    Fan, X.G.6    Ma, Q.7    Chen, N.8    Xie, X.X.9
  • 30
    • 85063911914 scopus 로고    scopus 로고
    • Metabolic engineering advances and prospects for amino acid production
    • COI: 1:CAS:528:DC%2BC1MXms1Ontro%3D
    • Wendisch VF. Metabolic engineering advances and prospects for amino acid production. Metab Eng. 2020;58:17–34. DOI: 10.1016/j.ymben.2019.03.008
    • (2020) Metab Eng , vol.58 , pp. 17-34
    • Wendisch, V.F.1
  • 31
    • 84925355124 scopus 로고    scopus 로고
    • Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system
    • COI: 1:CAS:528:DC%2BC2MXkvV2hsbY%3D
    • Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol. 2015;81:2506–14. DOI: 10.1128/AEM.04023-14
    • (2015) Appl Environ Microbiol , vol.81 , pp. 2506-2514
    • Jiang, Y.1    Chen, B.2    Duan, C.3    Sun, B.4    Yang, J.5    Yang, S.6
  • 32
    • 85084184763 scopus 로고    scopus 로고
    • Rebalancing microbial carbon distribution for l-threonine maximization using a thermal switch system
    • COI: 1:CAS:528:DC%2BB3cXovFKlsLc%3D
    • Fang Y, Wang J, Ma W, Yang J, Zhang H, Zhao L, Chen S, Zhang S, Hu X, Li Y, Wang X. Rebalancing microbial carbon distribution for l-threonine maximization using a thermal switch system. Metab Eng. 2020;61:33–46. DOI: 10.1016/j.ymben.2020.01.009
    • (2020) Metab Eng , vol.61 , pp. 33-46
    • Fang, Y.1    Wang, J.2    Ma, W.3    Yang, J.4    Zhang, H.5    Zhao, L.6    Chen, S.7    Zhang, S.8    Hu, X.9    Li, Y.10    Wang, X.11
  • 33
    • 85064619019 scopus 로고    scopus 로고
    • Deletion of regulator-encoding genes fadR, fabR and iclR to increase l-threonine production in Escherichia coli
    • COI: 1:CAS:528:DC%2BC1MXovFars7w%3D
    • Yang J, Fang Y, Wang J, Wang C, Zhao L, Wang X. Deletion of regulator-encoding genes fadR, fabR and iclR to increase l-threonine production in Escherichia coli. Appl Microbiol Biotechnol. 2019;103:4549–64. DOI: 10.1007/s00253-019-09818-8
    • (2019) Appl Microbiol Biotechnol , vol.103 , pp. 4549-4564
    • Yang, J.1    Fang, Y.2    Wang, J.3    Wang, C.4    Zhao, L.5    Wang, X.6
  • 34
    • 0035710746 scopus 로고    scopus 로고
    • Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method
    • COI: 1:CAS:528:DC%2BD38XhtFelt7s%3D
    • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–8. DOI: 10.1006/meth.2001.1262
    • (2001) Methods , vol.25 , pp. 402-408
    • Livak, K.J.1    Schmittgen, T.D.2
  • 36
    • 0028206522 scopus 로고
    • Cold-sensitive phenotype of Escherichia coli cells harboring a plasmid carrying the kil gene of phage lambda brought under control of cI857 gene promoters
    • COI: 1:CAS:528:DyaK2cXkt1yns7c%3D
    • Sugino Y, Morita M. Cold-sensitive phenotype of Escherichia coli cells harboring a plasmid carrying the kil gene of phage lambda brought under control of cI857 gene promoters. Gene. 1994;141:25–30. DOI: 10.1016/0378-1119(94)90123-6
    • (1994) Gene , vol.141 , pp. 25-30
    • Sugino, Y.1    Morita, M.2
  • 37
    • 79952106791 scopus 로고    scopus 로고
    • From zero to hero—design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production
    • COI: 1:CAS:528:DC%2BC3MXjsFaksrY%3D
    • Becker J, Zelder O, Häfner S, Schröder H, Wittmann C. From zero to hero—design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production. Metab Eng. 2011;13:159–68. DOI: 10.1016/j.ymben.2011.01.003
    • (2011) Metab Eng , vol.13 , pp. 159-168
    • Becker, J.1    Zelder, O.2    Häfner, S.3    Schröder, H.4    Wittmann, C.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.