-
1
-
-
0021799461
-
1,4,5,6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid. A novel cyclic amino acid from halophilic phototrophic bacteria of the genus Ectothiorhodospira
-
COI: 1:CAS:528:DyaL2MXktVegsrs%3D
-
Galinski EA, Pfeiffer HP, Trüper HG. 1,4,5,6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid. A novel cyclic amino acid from halophilic phototrophic bacteria of the genus Ectothiorhodospira. Eur J Biochem. 1985;149:135–9. DOI: 10.1111/j.1432-1033.1985.tb08903.x
-
(1985)
Eur J Biochem.
, vol.149
, pp. 135-139
-
-
Galinski, E.A.1
Pfeiffer, H.P.2
Trüper, H.G.3
-
2
-
-
33749031257
-
Extremolytes: natural compounds from extremophiles for versatile applications
-
COI: 1:CAS:528:DC%2BD28XpvF2lsr8%3D
-
Lentzen G, Schwarz T. Extremolytes: natural compounds from extremophiles for versatile applications. Appl Microbiol Biotechnol. 2006;72:623–34. DOI: 10.1007/s00253-006-0553-9
-
(2006)
Appl Microbiol Biotechnol
, vol.72
, pp. 623-634
-
-
Lentzen, G.1
Schwarz, T.2
-
3
-
-
48449093857
-
The multifunctional role of ectoine as a natural cell protectant
-
Graf R, Anzali S, Buenger J, Pfluecker F, Driller H. The multifunctional role of ectoine as a natural cell protectant. Clin Dermatol. 2008;26:326–33. DOI: 10.1016/j.clindermatol.2008.01.002
-
(2008)
Clin Dermatol
, vol.26
, pp. 326-333
-
-
Graf, R.1
Anzali, S.2
Buenger, J.3
Pfluecker, F.4
Driller, H.5
-
4
-
-
24044449002
-
Ectoine and hydroxyectoine inhibit aggregation and neurotoxicity of Alzheimer's beta-amyloid
-
COI: 1:CAS:528:DC%2BD2MXpt1ertL0%3D
-
Kanapathipillai M, Lentzen G, Sierks M, Park CB. Ectoine and hydroxyectoine inhibit aggregation and neurotoxicity of Alzheimer’s beta-amyloid. FEBS Lett. 2005;579:4775–80. DOI: 10.1016/j.febslet.2005.07.057
-
(2005)
FEBS Lett
, vol.579
, pp. 4775-4780
-
-
Kanapathipillai, M.1
Lentzen, G.2
Sierks, M.3
Park, C.B.4
-
5
-
-
85168306610
-
The compatible solute ectoine protects against nanoparticle-induced neutrophilic lung inflammation
-
Sydlik U, Weissenberg A, Peuschel H, Krutmann J, Unfried K. The compatible solute ectoine protects against nanoparticle-induced neutrophilic lung inflammation. Toxicol Lett. 2009;189:S188–S188. DOI: 10.1016/j.toxlet.2009.06.653
-
(2009)
Toxicol Lett
, vol.189
, pp. S188
-
-
Sydlik, U.1
Weissenberg, A.2
Peuschel, H.3
Krutmann, J.4
Unfried, K.5
-
6
-
-
84876406668
-
Novel effects of ectoine, a bacteria-derived natural tetrahydropyrimidine, in experimental colitis
-
COI: 1:CAS:528:DC%2BC3sXjsFyls7s%3D
-
Abdel-Aziz H, Wadie W, Abdallah DM, Lentzen G, Khayyal MT. Novel effects of ectoine, a bacteria-derived natural tetrahydropyrimidine, in experimental colitis. Phytomedicine. 2013;20:585–91. DOI: 10.1016/j.phymed.2013.01.009
-
(2013)
Phytomedicine
, vol.20
, pp. 585-591
-
-
Abdel-Aziz, H.1
Wadie, W.2
Abdallah, D.M.3
Lentzen, G.4
Khayyal, M.T.5
-
7
-
-
85044600469
-
Role of the extremolytes ectoine and hydroxyectoine as stress protectants and nutrients: genetics, phylogenomics, biochemistry, and structural analysis
-
Czech L, Hermann L, Stöveken N, Richter AA, Höppner A, Smits SHJ, Heider J, Bremer E. Role of the extremolytes ectoine and hydroxyectoine as stress protectants and nutrients: genetics, phylogenomics, biochemistry, and structural analysis. Genes. 2018;9:177. DOI: 10.3390/genes9040177
-
(2018)
Genes
, vol.9
, pp. 177
-
-
Czech, L.1
Hermann, L.2
Stöveken, N.3
Richter, A.A.4
Höppner, A.5
Smits, S.H.J.6
Heider, J.7
Bremer, E.8
-
8
-
-
77957021208
-
Ectoines in cell stress protection: uses and biotechnological production
-
COI: 1:CAS:528:DC%2BC3cXht1Wltr%2FF
-
Pastor JM, Salvador M, Argandona M, Bernal V, Reina-Bueno M, Csonka LN, Iborra JL, Vargas C, Nieto JJ, Canovas M. Ectoines in cell stress protection: uses and biotechnological production. Biotechnol Adv. 2010;28:782–801. DOI: 10.1016/j.biotechadv.2010.06.005
-
(2010)
Biotechnol Adv
, vol.28
, pp. 782-801
-
-
Pastor, J.M.1
Salvador, M.2
Argandona, M.3
Bernal, V.4
Reina-Bueno, M.5
Csonka, L.N.6
Iborra, J.L.7
Vargas, C.8
Nieto, J.J.9
Canovas, M.10
-
9
-
-
0032485056
-
Bacterial milking: a novel bioprocess for production of compatible solutes
-
COI: 1:CAS:528:DyaK1cXmvFGq
-
Sauer T, Galinski EA. Bacterial milking: a novel bioprocess for production of compatible solutes. Biotechnol Bioeng. 1998;57:306–13. DOI: 10.1002/(SICI)1097-0290(19980205)57:3<306::AID-BIT7>3.0.CO;2-L
-
(1998)
Biotechnol Bioeng
, vol.57
, pp. 306-313
-
-
Sauer, T.1
Galinski, E.A.2
-
10
-
-
77956235556
-
Process optimization of the integrated synthesis and secretion of ectoine and hydroxyectoine under hyper/hypo-osmotic stress
-
COI: 1:CAS:528:DC%2BC3cXptFGltLk%3D
-
Fallet C, Rohe P, Franco-Lara E. Process optimization of the integrated synthesis and secretion of ectoine and hydroxyectoine under hyper/hypo-osmotic stress. Biotechnol Bioeng. 2010;107:124–33. DOI: 10.1002/bit.22750
-
(2010)
Biotechnol Bioeng
, vol.107
, pp. 124-133
-
-
Fallet, C.1
Rohe, P.2
Franco-Lara, E.3
-
11
-
-
34249726647
-
Continuous synthesis and excretion of the compatible solute ectoine by a transgenic, nonhalophilic bacterium
-
COI: 1:CAS:528:DC%2BD2sXlslSmsr8%3D
-
Schubert T, Maskow T, Benndorf D, Harms H, Breuer U. Continuous synthesis and excretion of the compatible solute ectoine by a transgenic, nonhalophilic bacterium. Appl Environ Microbiol. 2007;73:3343–7. DOI: 10.1128/AEM.02482-06
-
(2007)
Appl Environ Microbiol
, vol.73
, pp. 3343-3347
-
-
Schubert, T.1
Maskow, T.2
Benndorf, D.3
Harms, H.4
Breuer, U.5
-
12
-
-
0036094875
-
New type of osmoregulated solute transporter identified in halophilic members of the Bacteria domain: TRAP transporter TeaABC mediates uptake of ectoine and hydroxyectoine in Halomonas elongata DSM 2581(T)
-
COI: 1:CAS:528:DC%2BD38XjvVGrsbs%3D
-
Grammann K, Volke A, Kunte HJ. New type of osmoregulated solute transporter identified in halophilic members of the Bacteria domain: TRAP transporter TeaABC mediates uptake of ectoine and hydroxyectoine in Halomonas elongata DSM 2581(T). J Bacteriol. 2002;184:3078–85. DOI: 10.1128/JB.184.11.3078-3085.2002
-
(2002)
J Bacteriol
, vol.184
, pp. 3078-3085
-
-
Grammann, K.1
Volke, A.2
Kunte, H.J.3
-
13
-
-
0037018879
-
The substrate-binding protein TeaA of the osmoregulated ectoine transporter TeaABC from Halomonas elongata: purification and characterization of recombinant TeaA
-
COI: 1:CAS:528:DC%2BD38XksFyqtbc%3D
-
Tetsch L, Kunte HJ. The substrate-binding protein TeaA of the osmoregulated ectoine transporter TeaABC from Halomonas elongata: purification and characterization of recombinant TeaA. FEMS Microbiol Lett. 2002;211:213–8. DOI: 10.1111/j.1574-6968.2002.tb11227.x
-
(2002)
FEMS Microbiol Lett
, vol.211
, pp. 213-218
-
-
Tetsch, L.1
Kunte, H.J.2
-
14
-
-
70349451856
-
Efficient production of ectoine using ectoine-excreting strain
-
COI: 1:CAS:528:DC%2BD1MXotFKltbk%3D
-
Zhang L-H, Lang Y-J, Nagata S. Efficient production of ectoine using ectoine-excreting strain. Extremophiles. 2009;13:717–24. DOI: 10.1007/s00792-009-0262-2
-
(2009)
Extremophiles
, vol.13
, pp. 717-724
-
-
Zhang, L.-H.1
Lang, Y.-J.2
Nagata, S.3
-
15
-
-
85019466483
-
Improved fermentative production of the compatible solute ectoine by Corynebacterium glutamicum from glucose and alternative carbon sources
-
Pérez-García F, Ziert C, Risse JM, Wendisch VF. Improved fermentative production of the compatible solute ectoine by Corynebacterium glutamicum from glucose and alternative carbon sources. J Biotechnol. 2017;258:59–68. DOI: 10.1016/j.jbiotec.2017.04.039
-
(2017)
J Biotechnol
, vol.258
, pp. 59-68
-
-
Pérez-García, F.1
Ziert, C.2
Risse, J.M.3
Wendisch, V.F.4
-
16
-
-
84887542598
-
Systems metabolic engineering of Corynebacterium glutamicum for production of the chemical chaperone ectoine
-
Becker J, Schäfer R, Kohlstedt M, Harder BJ, Borchert NS, Stöveken N, Bremer E, Wittmann C. Systems metabolic engineering of Corynebacterium glutamicum for production of the chemical chaperone ectoine. Microb Cell Fact. 2013;12:110–110. DOI: 10.1186/1475-2859-12-110
-
(2013)
Microb Cell Fact
, vol.12
, pp. 110
-
-
Becker, J.1
Schäfer, R.2
Kohlstedt, M.3
Harder, B.J.4
Borchert, N.S.5
Stöveken, N.6
Bremer, E.7
Wittmann, C.8
-
17
-
-
85068612518
-
Metabolic engineering of Corynebacterium glutamicum for high-level ectoine production: design, combinatorial assembly, and implementation of a transcriptionally balanced heterologous ectoine pathway
-
Giesselmann G, Dietrich D, Jungmann L, Kohlstedt M, Jeon E, Yim SS, Sommer F, Zimmer D, Mühlhaus T, Schroda M, Jeong K, Becker J, Wittmann C. Metabolic engineering of Corynebacterium glutamicum for high-level ectoine production: design, combinatorial assembly, and implementation of a transcriptionally balanced heterologous ectoine pathway. Biotechnol J. 2019;14:e201800417. DOI: 10.1002/biot.201800417
-
(2019)
Biotechnol J.
, vol.14
-
-
Giesselmann, G.1
Dietrich, D.2
Jungmann, L.3
Kohlstedt, M.4
Jeon, E.5
Yim, S.S.6
Sommer, F.7
Zimmer, D.8
Mühlhaus, T.9
Schroda, M.10
Jeong, K.11
Becker, J.12
Wittmann, C.13
-
18
-
-
84928266661
-
High production of ectoine from aspartate and glycerol by use of whole-cell biocatalysis in recombinant Escherichia coli
-
He Y-Z, Gong J, Yu H-Y, Tao Y, Zhang S, Dong Z-Y. High production of ectoine from aspartate and glycerol by use of whole-cell biocatalysis in recombinant Escherichia coli. Microb Cell Fact. 2015;14:55. DOI: 10.1186/s12934-015-0238-0
-
(2015)
Microb Cell Fact
, vol.14
, pp. 55
-
-
He, Y.-Z.1
Gong, J.2
Yu, H.-Y.3
Tao, Y.4
Zhang, S.5
Dong, Z.-Y.6
-
19
-
-
84935854110
-
Design of an ectoine-responsive AraC mutant and its application in metabolic engineering of ectoine biosynthesis
-
Chen W, Zhang S, Jiang P, Yao J, He Y, Chen L, Gui X, Dong Z, Tang S-Y. Design of an ectoine-responsive AraC mutant and its application in metabolic engineering of ectoine biosynthesis. Metab Eng. 2015;30:149–55. DOI: 10.1016/j.ymben.2015.05.004
-
(2015)
Metab Eng
, vol.30
, pp. 149-155
-
-
Chen, W.1
Zhang, S.2
Jiang, P.3
Yao, J.4
He, Y.5
Chen, L.6
Gui, X.7
Dong, Z.8
Tang, S.-Y.9
-
20
-
-
84960907446
-
Pathway construction and metabolic engineering for fermentative production of ectoine in Escherichia coli
-
COI: 1:CAS:528:DC%2BC28XktVOnt74%3D
-
Ning Y, Wu X, Zhang C, Xu Q, Chen N, Xie X. Pathway construction and metabolic engineering for fermentative production of ectoine in Escherichia coli. Metab Eng. 2016;36:10–8. DOI: 10.1016/j.ymben.2016.02.013
-
(2016)
Metab Eng
, vol.36
, pp. 10-18
-
-
Ning, Y.1
Wu, X.2
Zhang, C.3
Xu, Q.4
Chen, N.5
Xie, X.6
-
21
-
-
85087394099
-
Rational flux-tuning of Halomonas bluephagenesis for co-production of bioplastic PHB and ectoine
-
COI: 1:CAS:528:DC%2BB3cXhtlGms77O
-
Ma H, Zhao Y, Huang W, Zhang L, Wu F, Ye J, Chen G-Q. Rational flux-tuning of Halomonas bluephagenesis for co-production of bioplastic PHB and ectoine. Nat Commun. 2020;11:3313–3313. DOI: 10.1038/s41467-020-17223-3
-
(2020)
Nat Commun
, vol.11
, pp. 3313
-
-
Ma, H.1
Zhao, Y.2
Huang, W.3
Zhang, L.4
Wu, F.5
Ye, J.6
Chen, G.-Q.7
-
22
-
-
0036217950
-
Regulation of gene expression in the PTS in Escherichia coli: the role and interactions of Mlc
-
COI: 1:CAS:528:DC%2BD38XisV2rtbg%3D
-
Plumbridge J. Regulation of gene expression in the PTS in Escherichia coli: the role and interactions of Mlc. Curr Opin Microbiol. 2002;5:187–93. DOI: 10.1016/S1369-5274(02)00296-5
-
(2002)
Curr Opin Microbiol
, vol.5
, pp. 187-193
-
-
Plumbridge, J.1
-
23
-
-
85073825917
-
Developing an l-threonine-producing strain from wild-type Escherichia coli by modifying the glucose uptake, glyoxylate shunt, and l-threonine biosynthetic pathway
-
Zhu LF, Fang Y, Ding ZX, Zhang SY, Wang XY. Developing an l-threonine-producing strain from wild-type Escherichia coli by modifying the glucose uptake, glyoxylate shunt, and l-threonine biosynthetic pathway. Biotechnol Appl Biochem. 2019;15:962–76. DOI: 10.1002/bab.1813
-
(2019)
Biotechnol Appl Biochem.
, vol.15
, pp. 962-976
-
-
Zhu, L.F.1
Fang, Y.2
Ding, Z.X.3
Zhang, S.Y.4
Wang, X.Y.5
-
24
-
-
85048560653
-
Increasing l-threonine production in Escherichia coli by engineering the glyoxylate shunt and the l-threonine biosynthesis pathway
-
COI: 1:CAS:528:DC%2BC1cXos1Wiu7g%3D
-
Zhao H, Fang Y, Wang XY, Zhao L, Wang JL, Li Y. Increasing l-threonine production in Escherichia coli by engineering the glyoxylate shunt and the l-threonine biosynthesis pathway. Appl Microbiol Biotechnol. 2018;102:5505–18. DOI: 10.1007/s00253-018-9024-3
-
(2018)
Appl Microbiol Biotechnol
, vol.102
, pp. 5505-5518
-
-
Zhao, H.1
Fang, Y.2
Wang, X.Y.3
Zhao, L.4
Wang, J.L.5
Li, Y.6
-
25
-
-
84930936873
-
Metabolic engineering of Escherichia coli for the production of 3-aminopropionic acid
-
COI: 1:CAS:528:DC%2BC2MXhtVWrt7nF
-
Song CW, Lee J, Ko Y-S, Lee SY. Metabolic engineering of Escherichia coli for the production of 3-aminopropionic acid. Metab Eng. 2015;30:121–9. DOI: 10.1016/j.ymben.2015.05.005
-
(2015)
Metab Eng
, vol.30
, pp. 121-129
-
-
Song, C.W.1
Lee, J.2
Ko, Y.-S.3
Lee, S.Y.4
-
26
-
-
85078433332
-
Pathway construction and metabolic engineering for fermentative production of β-alanine in Escherichia coli
-
COI: 1:CAS:528:DC%2BB3cXis1Slur0%3D
-
Zou X, Guo L, Huang L, Li M, Zhang S, Yang A, Zhang Y, Zhu L, Zhang H, Zhang J, Feng Z. Pathway construction and metabolic engineering for fermentative production of β-alanine in Escherichia coli. Appl Microbiol Biotechnol. 2020;104:2545–59. DOI: 10.1007/s00253-020-10359-8
-
(2020)
Appl Microbiol Biotechnol
, vol.104
, pp. 2545-2559
-
-
Zou, X.1
Guo, L.2
Huang, L.3
Li, M.4
Zhang, S.5
Yang, A.6
Zhang, Y.7
Zhu, L.8
Zhang, H.9
Zhang, J.10
Feng, Z.11
-
27
-
-
36849002434
-
Systems metabolic engineering of Escherichia coli for Kl-threonine production
-
COI: 1:CAS:528:DC%2BD2sXjsVCju78%3D
-
Lee KH, Park JH, Kim TY, Kim HU, Lee SY. Systems metabolic engineering of Escherichia coli for Kl-threonine production. Mol Syst Biol. 2007;3:149–149. DOI: 10.1038/msb4100196
-
(2007)
Mol Syst Biol
, vol.3
, pp. 149
-
-
Lee, K.H.1
Park, J.H.2
Kim, T.Y.3
Kim, H.U.4
Lee, S.Y.5
-
28
-
-
79958202386
-
A novel l-aspartate dehydrogenase from the mesophilic bacterium Pseudomonas aeruginosa PAO1: molecular characterization and application for l-aspartate production
-
COI: 1:CAS:528:DC%2BC3MXmsFCrt74%3D
-
Li Y, Kawakami N, Ogola HJO, Ashida H, Ishikawa T, Shibata H, Sawa Y. A novel l-aspartate dehydrogenase from the mesophilic bacterium Pseudomonas aeruginosa PAO1: molecular characterization and application for l-aspartate production. Appl Microbiol Biotechnol. 2011;90:1953–62. DOI: 10.1007/s00253-011-3208-4
-
(2011)
Appl Microbiol Biotechnol
, vol.90
, pp. 1953-1962
-
-
Li, Y.1
Kawakami, N.2
Ogola, H.J.O.3
Ashida, H.4
Ishikawa, T.5
Shibata, H.6
Sawa, Y.7
-
29
-
-
85020113829
-
Current status on metabolic engineering for the production of l-aspartate family amino acids and derivatives
-
COI: 1:CAS:528:DC%2BC2sXovVGqs7g%3D
-
Li YJ, Wei HB, Wang T, Xu QY, Zhang CL, Fan XG, Ma Q, Chen N, Xie XX. Current status on metabolic engineering for the production of l-aspartate family amino acids and derivatives. Bioresour Technol. 2017;245:1588–602. DOI: 10.1016/j.biortech.2017.05.145
-
(2017)
Bioresour Technol
, vol.245
, pp. 1588-1602
-
-
Li, Y.J.1
Wei, H.B.2
Wang, T.3
Xu, Q.Y.4
Zhang, C.L.5
Fan, X.G.6
Ma, Q.7
Chen, N.8
Xie, X.X.9
-
30
-
-
85063911914
-
Metabolic engineering advances and prospects for amino acid production
-
COI: 1:CAS:528:DC%2BC1MXms1Ontro%3D
-
Wendisch VF. Metabolic engineering advances and prospects for amino acid production. Metab Eng. 2020;58:17–34. DOI: 10.1016/j.ymben.2019.03.008
-
(2020)
Metab Eng
, vol.58
, pp. 17-34
-
-
Wendisch, V.F.1
-
31
-
-
84925355124
-
Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system
-
COI: 1:CAS:528:DC%2BC2MXkvV2hsbY%3D
-
Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol. 2015;81:2506–14. DOI: 10.1128/AEM.04023-14
-
(2015)
Appl Environ Microbiol
, vol.81
, pp. 2506-2514
-
-
Jiang, Y.1
Chen, B.2
Duan, C.3
Sun, B.4
Yang, J.5
Yang, S.6
-
32
-
-
85084184763
-
Rebalancing microbial carbon distribution for l-threonine maximization using a thermal switch system
-
COI: 1:CAS:528:DC%2BB3cXovFKlsLc%3D
-
Fang Y, Wang J, Ma W, Yang J, Zhang H, Zhao L, Chen S, Zhang S, Hu X, Li Y, Wang X. Rebalancing microbial carbon distribution for l-threonine maximization using a thermal switch system. Metab Eng. 2020;61:33–46. DOI: 10.1016/j.ymben.2020.01.009
-
(2020)
Metab Eng
, vol.61
, pp. 33-46
-
-
Fang, Y.1
Wang, J.2
Ma, W.3
Yang, J.4
Zhang, H.5
Zhao, L.6
Chen, S.7
Zhang, S.8
Hu, X.9
Li, Y.10
Wang, X.11
-
33
-
-
85064619019
-
Deletion of regulator-encoding genes fadR, fabR and iclR to increase l-threonine production in Escherichia coli
-
COI: 1:CAS:528:DC%2BC1MXovFars7w%3D
-
Yang J, Fang Y, Wang J, Wang C, Zhao L, Wang X. Deletion of regulator-encoding genes fadR, fabR and iclR to increase l-threonine production in Escherichia coli. Appl Microbiol Biotechnol. 2019;103:4549–64. DOI: 10.1007/s00253-019-09818-8
-
(2019)
Appl Microbiol Biotechnol
, vol.103
, pp. 4549-4564
-
-
Yang, J.1
Fang, Y.2
Wang, J.3
Wang, C.4
Zhao, L.5
Wang, X.6
-
34
-
-
0035710746
-
Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method
-
COI: 1:CAS:528:DC%2BD38XhtFelt7s%3D
-
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–8. DOI: 10.1006/meth.2001.1262
-
(2001)
Methods
, vol.25
, pp. 402-408
-
-
Livak, K.J.1
Schmittgen, T.D.2
-
35
-
-
85116272802
-
Metabolic engineering of Escherichia coli for the production of lacto-N-neotetraose (LNnT)
-
Zhang W, Liu Z, Gong M, Li N, Lv X, Dong X, Liu Y, Li J, Du G, Liu L. Metabolic engineering of Escherichia coli for the production of lacto-N-neotetraose (LNnT). Syst Microbiol Biomanuf. 2021. 10.1007/s43393-021-00023-1. DOI: 10.1007/s43393-021-00023-1
-
(2021)
Syst Microbiol Biomanuf.
-
-
Zhang, W.1
Liu, Z.2
Gong, M.3
Li, N.4
Lv, X.5
Dong, X.6
Liu, Y.7
Li, J.8
Du, G.9
Liu, L.10
-
36
-
-
0028206522
-
Cold-sensitive phenotype of Escherichia coli cells harboring a plasmid carrying the kil gene of phage lambda brought under control of cI857 gene promoters
-
COI: 1:CAS:528:DyaK2cXkt1yns7c%3D
-
Sugino Y, Morita M. Cold-sensitive phenotype of Escherichia coli cells harboring a plasmid carrying the kil gene of phage lambda brought under control of cI857 gene promoters. Gene. 1994;141:25–30. DOI: 10.1016/0378-1119(94)90123-6
-
(1994)
Gene
, vol.141
, pp. 25-30
-
-
Sugino, Y.1
Morita, M.2
-
37
-
-
79952106791
-
From zero to hero—design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production
-
COI: 1:CAS:528:DC%2BC3MXjsFaksrY%3D
-
Becker J, Zelder O, Häfner S, Schröder H, Wittmann C. From zero to hero—design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production. Metab Eng. 2011;13:159–68. DOI: 10.1016/j.ymben.2011.01.003
-
(2011)
Metab Eng
, vol.13
, pp. 159-168
-
-
Becker, J.1
Zelder, O.2
Häfner, S.3
Schröder, H.4
Wittmann, C.5
-
38
-
-
79251617923
-
Glucose effect
-
Rédei GP, (ed), Springer, Dordrecht
-
Rédei GP. Glucose effect. In: Rédei GP, editor. Encyclopedia of genetics, genomics, proteomics and informatics. Dordrecht: Springer; 2008. p. 803–4. DOI: 10.1007/978-1-4020-6754-9
-
(2008)
Encyclopedia of genetics, genomics, proteomics and informatics
, pp. 803-804
-
-
Rédei, G.P.1
|