-
1
-
-
85009395458
-
BinaryConnect: Training deep neural networks with binary weights during propagations
-
M. Courbariaux, Y. Bengio, and J.P. David. BinaryConnect: Training deep neural networks with binary weights during propagations. In NIPS, pp. 3105-3113, 2015.
-
(2015)
NIPS
, pp. 3105-3113
-
-
Courbariaux, M.1
Bengio, Y.2
David, J.P.3
-
2
-
-
84965117097
-
Equilibrated adaptive learning rates for non-convex optimization
-
Y. Dauphin, H. de Vries, and Y. Bengio. Equilibrated adaptive learning rates for non-convex optimization. In NIPS, pp. 1504-1512, 2015a.
-
(2015)
NIPS
, pp. 1504-1512
-
-
Dauphin, Y.1
De Vries, H.2
Bengio, Y.3
-
4
-
-
80052250414
-
Adaptive subgradient methods for online learning and stochastic optimization
-
J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12:2121-2159, 2011.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 2121-2159
-
-
Duchi, J.1
Hazan, E.2
Singer, Y.3
-
5
-
-
84862277874
-
Understanding the difficulty of training deep feedforward neural networks
-
X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In AISTAT, pp. 249-256, 2010.
-
(2010)
AISTAT
, pp. 249-256
-
-
Glorot, X.1
Bengio, Y.2
-
7
-
-
84893401626
-
-
arXiv preprint
-
I.J. Goodfellow, D. Warde-Farley, P. Lamblin, V. Dumoulin, M. Mirza, R. Pascanu, J. Bergstra, F. Bastien, and Y. Bengio. Pylearn2: a machine learning research library. arXiv preprint arXiv:1308.4214, 2013.
-
(2013)
Pylearn2: A Machine Learning Research Library
-
-
Goodfellow, I.J.1
Warde-Farley, D.2
Lamblin, P.3
Dumoulin, V.4
Mirza, M.5
Pascanu, R.6
Bergstra, J.7
Bastien, F.8
Bengio, Y.9
-
8
-
-
85083950579
-
Deep compression: Compressing deep neural network with pruning, trained quantization and Huffman coding
-
S. Han, H. Mao, and W.J. Dally. Deep compression: Compressing deep neural network with pruning, trained quantization and Huffman coding. In ICLR, 2016.
-
(2016)
ICLR
-
-
Han, S.1
Mao, H.2
Dally, W.J.3
-
10
-
-
85013626529
-
Binarized neural networks
-
I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized neural networks. In NIPS, pp. 4107-4115, 2016.
-
(2016)
NIPS
, pp. 4107-4115
-
-
Hubara, I.1
Courbariaux, M.2
Soudry, D.3
El-Yaniv, R.4
Bengio, Y.5
-
11
-
-
84959876313
-
Visualizing and understanding recurrent networks
-
A. Karpathy, J. Johnson, and F.-F. Li. Visualizing and understanding recurrent networks. In ICLR, 2016.
-
(2016)
ICLR
-
-
Karpathy, A.1
Johnson, J.2
Li, F.-F.3
-
12
-
-
85083951289
-
Compression of deep convolutional neural networks for fast and low power mobile applications
-
Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin. Compression of deep convolutional neural networks for fast and low power mobile applications. In ICLR, 2016.
-
(2016)
ICLR
-
-
Kim, Y.-D.1
Park, E.2
Yoo, S.3
Choi, T.4
Yang, L.5
Shin, D.6
-
13
-
-
85083951076
-
A method for stochastic optimization
-
D. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.
-
(2015)
ICLR
-
-
Kingma, D.1
Adam, J.Ba.2
-
14
-
-
84930630277
-
Deep learning
-
Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436-444, 2015.
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
15
-
-
84910594199
-
Proximal Newton-type methods for minimizing composite functions
-
J.D. Lee, Y. Sun, and M.A. Saunders. Proximal Newton-type methods for minimizing composite functions. SIAM Journal on Optimization, 24(3):1420-1443, 2014.
-
(2014)
SIAM Journal on Optimization
, vol.24
, Issue.3
, pp. 1420-1443
-
-
Lee, J.D.1
Sun, Y.2
Saunders, M.A.3
-
18
-
-
84872565347
-
Training deep and recurrent networks with Hessian-free optimization
-
Springer
-
J. Martens and I. Sutskever. Training deep and recurrent networks with Hessian-free optimization. In Neural Networks: Tricks of the trade, pp. 479-535. Springer, 2012.
-
(2012)
Neural Networks: Tricks of the Trade
, pp. 479-535
-
-
Martens, J.1
Sutskever, I.2
-
19
-
-
84965128773
-
Tensorizing neural networks
-
A. Novikov, D. Podoprikhin, A. Osokin, and D.P. Vetrov. Tensorizing neural networks. In NIPS, pp. 442-450, 2015.
-
(2015)
NIPS
, pp. 442-450
-
-
Novikov, A.1
Podoprikhin, D.2
Osokin, A.3
Vetrov, D.P.4
-
20
-
-
85083950291
-
Revisiting natural gradient for deep networks
-
R. Pascanu and Y. Bengio. Revisiting natural gradient for deep networks. In ICLR, 2014.
-
(2014)
ICLR
-
-
Pascanu, R.1
Bengio, Y.2
-
21
-
-
84892982833
-
On the difficulty of training recurrent neural networks
-
R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural networks. In ICLR, pp. 1310-1318, 2013.
-
(2013)
ICLR
, pp. 1310-1318
-
-
Pascanu, R.1
Mikolov, T.2
Bengio, Y.3
-
22
-
-
84928251916
-
DC proximal Newton for nonconvex optimization problems
-
A. Rakotomamonjy, R. Flamary, and G. Gasso. DC proximal Newton for nonconvex optimization problems. IEEE Transactions on Neural Networks and Learning Systems, 27(3):636-647, 2016.
-
(2016)
IEEE Transactions on Neural Networks and Learning Systems
, vol.27
, Issue.3
, pp. 636-647
-
-
Rakotomamonjy, A.1
Flamary, R.2
Gasso, G.3
-
23
-
-
84990055874
-
XNOR-Net: ImageNet classification using binary convolutional neural networks
-
M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. XNOR-Net: ImageNet classification using binary convolutional neural networks. In ECCV, 2016.
-
(2016)
ECCV
-
-
Rastegari, M.1
Ordonez, V.2
Redmon, J.3
Farhadi, A.4
-
26
-
-
77951160349
-
The concave-convex procedure (CCCP)
-
A.L. Yuille and A. Rangarajan. The concave-convex procedure (CCCP). NIPS, 2:1033-1040, 2002.
-
(2002)
NIPS
, vol.2
, pp. 1033-1040
-
-
Yuille, A.L.1
Rangarajan, A.2
-
28
-
-
85023600253
-
-
Technical Report
-
S. Zhou, Z. Ni, X. Zhou, H. Wen, Y. Wu, and Y. Zou. DoReFa-Net: Training low bitwidth convolutional neural networks with low bitwidth gradients. Technical Report arXiv:1606.06160, 2016.
-
(2016)
DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients
-
-
Zhou, S.1
Ni, Z.2
Zhou, X.3
Wen, H.4
Wu, Y.5
Zou, Y.6
|