메뉴 건너뛰기




Volumn 8, Issue 5, 2020, Pages

Water decontamination using non-thermal plasma: Concepts, applications, and prospects

Author keywords

Advanced oxidation process; Drinking water treatment; Environmental water treatment; Non thermal plasma; Plasma reactors; Water decontamination

Indexed keywords

AGRICULTURAL ROBOTS; BIODEGRADABILITY; BIODEGRADATION; DECONTAMINATION; OZONIZATION; PLASMA APPLICATIONS;

EID: 85094141706     PISSN: None     EISSN: 22133437     Source Type: Journal    
DOI: 10.1016/j.jece.2020.104377     Document Type: Review
Times cited : (60)

References (215)
  • 3
    • 85071384394 scopus 로고    scopus 로고
    • Detoxification of water and wastewater by advanced oxidation processes
    • D.S. Babu, V. Srivastava, P.V. Nidheesh, M.S. Kumar, Detoxification of water and wastewater by advanced oxidation processes, Sci. Total Environ. 696 (2019) 133961, https://doi.org/10.1016/j.scitotenv.2019.133961.
    • (2019) Sci. Total Environ. , vol.696 , pp. 133961
    • Babu, D.S.1    Srivastava, V.2    Nidheesh, P.V.3    Kumar, M.S.4
  • 5
    • 85048504279 scopus 로고    scopus 로고
    • Non-thermal atmospheric pressure plasma jet for the bacterial inactivation in an aqueous medium
    • L. Chandana, C.J. Sangeetha, T. Shashidhar, C. Subrahmanyam, Non-thermal atmospheric pressure plasma jet for the bacterial inactivation in an aqueous medium, Sci. Total Environ. 640–641 (2018) 493–500, https://doi.org/10.1016/j.scitotenv.2018.05.342.
    • (2018) Sci. Total Environ. , vol.640-641 , pp. 493-500
    • Chandana, L.1    Sangeetha, C.J.2    Shashidhar, T.3    Subrahmanyam, C.4
  • 6
    • 85055315415 scopus 로고    scopus 로고
    • Analysis of short-lived reactive species in plasma-air-water systems: The dos and the do nots
    • Y. Gorbanev, A. Privat-Maldonado, A. Bogaerts, Analysis of short-lived reactive species in plasma-air-water systems: the dos and the do nots, Anal. Chem. 90 (2018) 13151–13158, https://doi.org/10.1021/acs.analchem.8b03336.
    • (2018) Anal. Chem. , vol.90 , pp. 13151-13158
    • Gorbanev, Y.1    Privat-Maldonado, A.2    Bogaerts, A.3
  • 7
    • 85075265459 scopus 로고    scopus 로고
    • Plasma-assisted advanced oxidation process by a multi-hole dielectric barrier discharge in water and its application to wastewater treatment
    • S. Ma, K. Kim, S. Chun, S. Youn, Y. Hong, Plasma-assisted advanced oxidation process by a multi-hole dielectric barrier discharge in water and its application to wastewater treatment, Chemosphere 243 (2020) 125377, https://doi.org/10. 1016/j.chemosphere.2019.125377.
    • Chemosphere , vol.243 , Issue.2020 , pp. 125377
    • Ma, S.1    Kim, K.2    Chun, S.3    Youn, S.4    Hong, Y.5
  • 8
    • 85047418603 scopus 로고    scopus 로고
    • Degradation of 2, 4-dichlorophenol in aqueous solution by dielectric barrier discharge: Effects of plasma-working gases, degradation pathways and toxicity assessment
    • H. Zhang, Q. Zhang, C. Miao, Q. Huang, Degradation of 2, 4-dichlorophenol in aqueous solution by dielectric barrier discharge: effects of plasma-working gases, degradation pathways and toxicity assessment, Chemosphere 204 (2018) 351–358, https://doi.org/10.1016/j.chemosphere.2018.04.052.
    • (2018) Chemosphere , vol.204 , pp. 351-358
    • Zhang, H.1    Zhang, Q.2    Miao, C.3    Huang, Q.4
  • 9
    • 0005372845 scopus 로고
    • Oscillations in ionized gases
    • I. Langmuir, Oscillations in ionized gases, Proc. Natl. Acad. Sci. U. S. A. 14 (1928) 627–637, https://doi.org/10.1073/pnas.14.8.627.
    • (1928) Proc. Natl. Acad. Sci. U. S. A. , vol.14 , pp. 627-637
    • Langmuir, I.1
  • 10
    • 84955211950 scopus 로고    scopus 로고
    • Nonthermal plasma -a tool for decontamination and disinfection
    • V. Scholtz, J. Pazlarová, H. Sou, J. Khun, J. Julák, Nonthermal plasma -a tool for decontamination and disinfection, Biotechnol. Adv. J. 33 (2015) 1108–1119, https://doi.org/10.1016/j.biotechadv.2015.01.002.
    • (2015) Biotechnol. Adv. J. , vol.33 , pp. 1108-1119
    • Scholtz, V.1    Pazlarová, J.2    Sou, H.3    Khun, J.4    Julák, J.5
  • 12
    • 0028743611 scopus 로고
    • Thermal plasma processing of materials: A review
    • P.R. Taylor, S.A. Pirzada, Thermal plasma processing of materials: a review, Adv. Perform. Mater. 50 (1994) 35–50, https://doi.org/10.1016/j.jcou.2014.02.002.
    • (1994) Adv. Perform. Mater. , vol.50 , pp. 35-50
    • Taylor, P.R.1    Pirzada, S.A.2
  • 14
    • 84996548921 scopus 로고    scopus 로고
    • Application of thermal plasma technology for the treatment of solid wastes in China: An overview
    • J. Li, K. Liu, S. Yan, Y. Li, D. Han, Application of thermal plasma technology for the treatment of solid wastes in China: an overview, Waste Manag. 58 (2016) 260–269, https://doi.org/10.1016/j.wasman.2016.06.011.
    • (2016) Waste Manag , vol.58 , pp. 260-269
    • Li, J.1    Liu, K.2    Yan, S.3    Li, Y.4    Han, D.5
  • 15
    • 84938986760 scopus 로고    scopus 로고
    • An improved process for high nutrition of germinated brown rice production: Low-pressure plasma
    • H.H. Chen, H.C. Chang, Y.K. Chen, C.L. Hung, S.Y. Lin, Y.S. Chen, An improved process for high nutrition of germinated brown rice production: low-pressure plasma, Food Chem. 191 (2016) 120–127, https://doi.org/10.1016/j.foodchem.2015.01.083.
    • (2016) Food Chem , vol.191 , pp. 120-127
    • Chen, H.H.1    Chang, H.C.2    Chen, Y.K.3    Hung, C.L.4    Lin, S.Y.5    Chen, Y.S.6
  • 17
    • 85026904881 scopus 로고    scopus 로고
    • Paracetamol degradation in aqueous solution by non-thermal plasma
    • Y. Baloul, O. Aubry, C. Colas, Paracetamol degradation in aqueous solution by non-thermal plasma, Eur. Phys. J. Appl. Phys. 79 (2017) 30802, https://doi.org/10.1051/epjap/2017160472.
    • (2017) Eur. Phys. J. Appl. Phys. , vol.79 , pp. 30802
    • Baloul, Y.1    Aubry, O.2    Colas, C.3
  • 18
    • 84989953487 scopus 로고    scopus 로고
    • Cold plasma interactions with enzymes in foods and model systems
    • N.N. Misra, S.K. Pankaj, A. Segat, K. Ishikawa, Cold plasma interactions with enzymes in foods and model systems, Trends Food Sci. Technol. 55 (2016) 39–47, https://doi.org/10.1016/j.tifs.2016.07.001.
    • (2016) Trends Food Sci. Technol. , vol.55 , pp. 39-47
    • Misra, N.N.1    Pankaj, S.K.2    Segat, A.3    Ishikawa, K.4
  • 20
    • 85049990526 scopus 로고    scopus 로고
    • Degradation of sulfonamide antibiotics and their intermediates toxicity in an aeration-assisted non-thermal plasma while treating strong wastewater
    • D. Lee, J. Lee, J. Nam, H. Kim, Degradation of sulfonamide antibiotics and their intermediates toxicity in an aeration-assisted non-thermal plasma while treating strong wastewater, Chemosphere 209 (2018) 901–907, https://doi.org/10.1016/j.chemosphere.2018.06.125.
    • (2018) Chemosphere , vol.209 , pp. 901-907
    • Lee, D.1    Lee, J.2    Nam, J.3    Kim, H.4
  • 21
    • 85021701252 scopus 로고    scopus 로고
    • Analysis of reactive oxygen and nitrogen species generated in three liquid media by low temperature helium plasma jet
    • J. Chauvin, F. Judée, M. Yousfi, P. Vicendo, N. Merbahi, Analysis of reactive oxygen and nitrogen species generated in three liquid media by low temperature helium plasma jet, Sci. Rep. 7 (2017) 4562, https://doi.org/10.1038/s41598-017-04650-4.
    • (2017) Sci. Rep. , vol.7 , pp. 4562
    • Chauvin, J.1    Judée, F.2    Yousfi, M.3    Vicendo, P.4    Merbahi, N.5
  • 22
    • 85008671007 scopus 로고    scopus 로고
    • Inactivation mechanisms of nonthermal plasma on microbes: A review
    • X. Liao, D. Liu, Q. Xiang, J. Ahn, S. Chen, X. Ye, Inactivation mechanisms of nonthermal plasma on microbes: a review, Food Control 75 (2017) 83–91, https://doi.org/10.1016/j.foodcont.2016.12.021.
    • (2017) Food Control , vol.75 , pp. 83-91
    • Liao, X.1    Liu, D.2    Xiang, Q.3    Ahn, J.4    Chen, S.5    Ye, X.6
  • 23
    • 85059845489 scopus 로고    scopus 로고
    • Preferential production of reactive species and bactericidal e ffi cacy of gas- Liquid plasma discharge
    • J. Shen, H. Zhang, Z. Xu, Z. Zhang, C. Cheng, G. Ni, Y. Lan, Preferential production of reactive species and bactericidal e ffi cacy of gas- liquid plasma discharge, Chem. Eng. J. 362 (2019) 402–412, https://doi.org/10.1016/j.cej.2019.01.018.
    • (2019) Chem. Eng. J. , vol.362 , pp. 402-412
    • Shen, J.1    Zhang, H.2    Xu, Z.3    Zhang, Z.4    Cheng, C.5    Ni, G.6    Lan, Y.7
  • 24
    • 85075386867 scopus 로고    scopus 로고
    • Degradation of chlorobenzene in aqueous solution by pulsed power plasma: Mechanism and effect of operational parameters
    • J. Jose, L. Philip, Degradation of chlorobenzene in aqueous solution by pulsed power plasma: mechanism and effect of operational parameters, J. Environ. Chem. Eng. 7 (2019) 103476, https://doi.org/10.1016/j.jece.2019.103476.
    • (2019) J. Environ. Chem. Eng. , vol.7 , pp. 103476
    • Jose, J.1    Philip, L.2
  • 25
    • 85068186871 scopus 로고    scopus 로고
    • Post-discharge DBD plasma treatment for degradation of organic dye in water: A comparison with different plasma operation methods
    • M. Rahimpour, H. Taghvaei, S. Zafarnak, M.R. Rahimpour, S. Raeissi, Post-discharge DBD plasma treatment for degradation of organic dye in water: a comparison with different plasma operation methods, J. Environ. Chem. Eng. 7 (2019) 103220, https://doi.org/10.1016/j.jece.2019.103220.
    • (2019) J. Environ. Chem. Eng. , vol.7 , pp. 103220
    • Rahimpour, M.1    Taghvaei, H.2    Zafarnak, S.3    Rahimpour, M.R.4    Raeissi, S.5
  • 27
    • 84943142342 scopus 로고    scopus 로고
    • Organic acids enhanced decoloration of azo dye in gas phase surface discharge plasma system
    • T. Wang, G. Qu, J. Ren, Q. Sun, D. Liang, Organic acids enhanced decoloration of azo dye in gas phase surface discharge plasma system, J. Hazard. Mater. 302 (2016) 65–71, https://doi.org/10.1016/j.jhazmat.2015.09.051.
    • (2016) J. Hazard. Mater. , vol.302 , pp. 65-71
    • Wang, T.1    Qu, G.2    Ren, J.3    Sun, Q.4    Liang, D.5
  • 28
    • 85018188304 scopus 로고    scopus 로고
    • Water electrode plasma discharge to enhance the bacterial inactivation in water
    • I. Hwang, J. Jeong, T. You, J. Jung, Water electrode plasma discharge to enhance the bacterial inactivation in water, Biotechnol. Biotechnol. Equip. 32 (2018) 530–534, https://doi.org/10.1080/13102818.2017.1321969.
    • (2018) Biotechnol. Biotechnol. Equip. , vol.32 , pp. 530-534
    • Hwang, I.1    Jeong, J.2    You, T.3    Jung, J.4
  • 29
    • 85067964172 scopus 로고    scopus 로고
    • Multihole dielectric barrier discharge with asymmetric electrode arrangement in water and application to sterilization of aqua pathogens
    • Y. Cheol, S. Hwal, K. Kim, Y. Wook, Multihole dielectric barrier discharge with asymmetric electrode arrangement in water and application to sterilization of aqua pathogens, Chem. Eng. J. 374 (2019) 133–143, https://doi.org/10.1016/j.cej.2019.05.178.
    • (2019) Chem. Eng. J. , vol.374 , pp. 133-143
    • Cheol, Y.1    Hwal, S.2    Kim, K.3    Wook, Y.4
  • 30
    • 85064279054 scopus 로고    scopus 로고
    • Effect of chemical species generated by different geometries of air and argon non-thermal plasma reactors on bacteria inactivation in water
    • A.L.V. Cubas, M.M. Machado, J. Ramos dos Santos, J.J. Zanco, D.H.B. Ribeiro, A.S. André, N.A. Debacher, Effect of chemical species generated by different geometries of air and argon non-thermal plasma reactors on bacteria inactivation in water, Sep. Purif. Technol. 222 (2019) 68–74, https://doi.org/10.1016/j.seppur.2019.03.057.
    • (2019) Sep. Purif. Technol. , vol.222 , pp. 68-74
    • Cubas, A.L.V.1    Machado, M.M.2    Ramos dos Santos, J.3    Zanco, J.J.4    Ribeiro, D.H.B.5    André, A.S.6    Debacher, N.A.7
  • 31
    • 85082926911 scopus 로고    scopus 로고
    • Antibiotics degradation and bacteria inactivation in water by cold atmospheric plasma discharges above and below water surface
    • M. El Shaer, M. Eldaly, G. Heikal, Y. Sharaf, H. Diab, M. Mobasher, A. Rousseau, Antibiotics degradation and bacteria inactivation in water by cold atmospheric plasma discharges above and below water surface, Plasma Chem. Plasma Process. 40 (2020), https://doi.org/10.1007/s11090-020-10076-0.
    • Plasma Chem. Plasma Process. , vol.40 , Issue.2020
    • El Shaer, M.1    Eldaly, M.2    Heikal, G.3    Sharaf, Y.4    Diab, H.5    Mobasher, M.6    Rousseau, A.7
  • 32
    • 33745940906 scopus 로고    scopus 로고
    • Aqueous phenol decomposition by pulsed discharge on water surface
    • M. Sato, T. Tokutake, T. Ohshima, A.T. Sugiarto, Aqueous phenol decomposition by pulsed discharge on water surface, IAS Annu, Meet. 4 (2005) 2895–2899, https://doi.org/10.1109/IAS.2005.1518870.
    • (2005) IAS Annu, Meet , vol.4 , pp. 2895-2899
    • Sato, M.1    Tokutake, T.2    Ohshima, T.3    Sugiarto, A.T.4
  • 33
    • 85075558380 scopus 로고    scopus 로고
    • An investigation on treatment of groundwater with cold plasma for domestic water supply,
    • D. Van Nguyen, N.M. Ho, K.D. Hoang, T.V. Le, V.H. Le, An investigation on treatment of groundwater with cold plasma for domestic water supply, Groundw. Sustain. Dev. 10 (2020) 100309, https://doi.org/10.1016/j.gsd.2019.100309.
    • Groundw. Sustain. Dev. , vol.10 , Issue.2020 , pp. 100309
    • van Nguyen, D.1    Ho, N.M.2    Hoang, K.D.3    Le, T.V.4    Le, V.H.5
  • 34
    • 85092254666 scopus 로고    scopus 로고
    • Performance of an atmospheric plasma discharge reactor for inactivation of Enterocococcus faecalis and Escherichia coli in aqueous media
    • P. Murugesan, J.A. Moses, C. Anandharamakrishnan, Performance of an atmospheric plasma discharge reactor for inactivation of Enterocococcus faecalis and Escherichia coli in aqueous media, J. Environ. Chem. Eng. 8 (2020) 103891, https://doi.org/10.1016/j.jece.2020.103891.
    • J. Environ. Chem. Eng. , vol.8 , Issue.2020 , pp. 103891
    • Murugesan, P.1    Moses, J.A.2    Anandharamakrishnan, C.3
  • 35
    • 85075462467 scopus 로고    scopus 로고
    • A systematic study of the antimicrobial mechanisms of cold atmospheric-pressure plasma for water disinfection
    • H. Xu, R. Ma, Y. Zhu, M. Du, H. Zhang, Z. Jiao, A systematic study of the antimicrobial mechanisms of cold atmospheric-pressure plasma for water disinfection, Sci. Total Environ. 703 (2020) 134965, https://doi.org/10.1016/j.scitotenv.2019. 134965.
    • Sci. Total Environ. , vol.703 , Issue.2020 , pp. 134965
    • Xu, H.1    Ma, R.2    Zhu, Y.3    Du, M.4    Zhang, H.5    Jiao, Z.6
  • 36
    • 84885765632 scopus 로고    scopus 로고
    • Aqueous-phase chemistry of electrical discharge plasma in water and in gas-liquid environments
    • P. Lukes, B.R. Locke, J.L. Brisset, Aqueous-phase chemistry of electrical discharge plasma in water and in gas-liquid environments, Plasma Chem. Catal. Gases Liq. (2012) 243–308, https://doi.org/10.1002/9783527649525 ch7.
    • (2012) Plasma Chem. Catal. Gases Liq. , pp. 243-308
    • Lukes, P.1    Locke, B.R.2    Brisset, J.L.3
  • 37
    • 67749109774 scopus 로고    scopus 로고
    • Degradation of azo dye acid red 88 by gas phase dielectric barrier discharges
    • Q. Tang, W. Jiang, Y. Zhang, W. Wei, T.M. Lim, Degradation of azo dye acid red 88 by gas phase dielectric barrier discharges, Plasma Chem. Plasma Process. 29 (2009) 291–305, https://doi.org/10.1007/s11090-009-9181-3.
    • (2009) Plasma Chem. Plasma Process. , vol.29 , pp. 291-305
    • Tang, Q.1    Jiang, W.2    Zhang, Y.3    Wei, W.4    Lim, T.M.5
  • 38
    • 84863115324 scopus 로고    scopus 로고
    • Inactivation of Bacillus subtilis spores in water by a direct-current, cold atmospheric-pressure air plasma microjet
    • P. Sun, H. Wu, N. Bai, H. Zhou, R. Wang, H. Feng, W. Zhu, J. Zhang, J. Fang, Inactivation of Bacillus subtilis spores in water by a direct-current, cold atmospheric-pressure air plasma microjet, Plasma Process. Polym. 9 (2012) 157–164, https://doi.org/10.1002/ppap.201100041.
    • (2012) Plasma Process. Polym. , vol.9 , pp. 157-164
    • Sun, P.1    Wu, H.2    Bai, N.3    Zhou, H.4    Wang, R.5    Feng, H.6    Zhu, W.7    Zhang, J.8    Fang, J.9
  • 40
    • 0031761157 scopus 로고    scopus 로고
    • Costs of low-temperature plasma sterilization compared with other sterilization methods
    • S. Adler, M. Scherrer, F.D. Daschner, Costs of low-temperature plasma sterilization compared with other sterilization methods, J. Hosp. Infect. 40 (1998) 125–134, https://doi.org/10.1016/s0195-6701(98)90091-3.
    • (1998) J. Hosp. Infect. , vol.40 , pp. 125-134
    • Adler, S.1    Scherrer, M.2    Daschner, F.D.3
  • 41
    • 84859652451 scopus 로고    scopus 로고
    • Cold plasma decontamination of foods
    • B.A. Niemira, Cold plasma decontamination of foods, Annu. Rev. Food Sci. Technol. 3 (2012) 125–142, https://doi.org/10.1146/annurev-food-022811-101132.
    • (2012) Annu. Rev. Food Sci. Technol. , vol.3 , pp. 125-142
    • Niemira, B.A.1
  • 42
    • 85069678635 scopus 로고    scopus 로고
    • Degradation of liquid phase N, N-dimethylformamide by dielectric barrier discharge plasma: Mechanism and degradation pathways
    • W. Sang, J. Cui, L. Mei, Q. Zhang, Y. Li, D. Li, Degradation of liquid phase N, N-dimethylformamide by dielectric barrier discharge plasma: mechanism and degradation pathways, Chemosphere 236 (2019) 124401, https://doi.org/10.1016/j.chemosphere.2019.124401.
    • (2019) Chemosphere , vol.236 , pp. 124401
    • Sang, W.1    Cui, J.2    Mei, L.3    Zhang, Q.4    Li, Y.5    Li, D.6
  • 44
    • 0030168235 scopus 로고    scopus 로고
    • Sterilization of contaminated matter with an atmospheric pressure
    • M. Laroussi, Sterilization of contaminated matter with an atmospheric pressure, IEEE Trans. Plasma Sci. IEEE Nucl. Plasma Sci. Soc. 24 (1996) 1188–1191, https://doi.org/10.1109/27.533129.
    • (1996) IEEE Trans. Plasma Sci. IEEE Nucl. Plasma Sci. Soc. , vol.24 , pp. 1188-1191
    • Laroussi, M.1
  • 45
    • 85051456796 scopus 로고    scopus 로고
    • Quantitative microbial assessment for Escherichia coli after treatment by high voltage gas phase plasma
    • V. Stulić, T. Vukušić, A.R. Jambrak, D. Popović, J. Mrvčić, Z. Herceg, Quantitative microbial assessment for Escherichia coli after treatment by high voltage gas phase plasma, Innov. Food Sci. Emerg. Technol. 53 (2018) 26–35, https://doi.org/10.1016/j.ifset.2018.08.007.
    • (2018) Innov. Food Sci. Emerg. Technol. , vol.53 , pp. 26-35
    • Stulić, V.1    Vukušić, T.2    Jambrak, A.R.3    Popović, D.4    Mrvčić, J.5    Herceg, Z.6
  • 46
    • 78751621731 scopus 로고    scopus 로고
    • Inactivation of MS2 bacteriophage by streamer corona discharge in water
    • C. Lee, J. Kim, J. Yoon, Inactivation of MS2 bacteriophage by streamer corona discharge in water, Chemosphere 82 (2011) 1135–1140, https://doi.org/10.1016/j.chemosphere.2010.11.036.
    • (2011) Chemosphere , vol.82 , pp. 1135-1140
    • Lee, C.1    Kim, J.2    Yoon, J.3
  • 47
    • 78549287085 scopus 로고    scopus 로고
    • Atmospheric plasma discharge sterilization effects on whole cell fatty acid profiles of Escherichia coli and Staphylococcus aureus
    • M. Korachi, C. Gurol, N. Aslan, Atmospheric plasma discharge sterilization effects on whole cell fatty acid profiles of Escherichia coli and Staphylococcus aureus, J. Electrostat. 68 (2010) 508–512, https://doi.org/10.1016/j.elstat.2010.06.014.
    • (2010) J. Electrostat. , vol.68 , pp. 508-512
    • Korachi, M.1    Gurol, C.2    Aslan, N.3
  • 49
    • 75649102824 scopus 로고    scopus 로고
    • Effects of pH on bacterial inactivation in aqueous solutions due to low-temperature atmospheric pressure plasma application
    • S. Ikawa, K. Kitano, S. Hamaguchi, Effects of pH on bacterial inactivation in aqueous solutions due to low-temperature atmospheric pressure plasma application, Plasma Process. Polym. 7 (2010) 33–42, https://doi.org/10.1002/ppap. 200900090.
    • (2010) Plasma Process. Polym. , vol.7 , pp. 33-42
    • Ikawa, S.1    Kitano, K.2    Hamaguchi, S.3
  • 51
    • 84925441966 scopus 로고    scopus 로고
    • Characteristics of DC gas-liquid phase atmospheric-pressure plasma and bacteria inactivation mechanism
    • J. Shen, Q. Sun, Z. Zhang, C. Cheng, Y. Lan, H. Zhang, Z. Xu, Y. Zhao, W. Xia, P.K. Chu, Characteristics of DC gas-liquid phase atmospheric-pressure plasma and bacteria inactivation mechanism, Plasma Process. Polym. 12 (2014) 252–259, https://doi.org/10.1002/ppap.201400129.
    • (2014) Plasma Process. Polym. , vol.12 , pp. 252-259
    • Shen, J.1    Sun, Q.2    Zhang, Z.3    Cheng, C.4    Lan, Y.5    Zhang, H.6    Xu, Z.7    Zhao, Y.8    Xia, W.9    Chu, P.K.10
  • 53
    • 84876488273 scopus 로고    scopus 로고
    • Mechanisms of bacterial inactivation in the liquid phase induced by a remote RF cold atmospheric pressure plasma jet
    • C.A.J.V. Gils, S. Hofmann, B.K.H.L. Boekema, R. Brandenburg, P.J. Bruggeman, Mechanisms of bacterial inactivation in the liquid phase induced by a remote RF cold atmospheric pressure plasma jet, J. Phys. D Appl. Phys. 46 (2013) 175203, https://doi.org/10.1088/0022-3727/46/17/175203.
    • (2013) J. Phys. D Appl. Phys. , vol.46 , pp. 175203
    • Gils, C.A.J.V.1    Hofmann, S.2    Boekema, B.K.H.L.3    Brandenburg, R.4    Bruggeman, P.J.5
  • 54
    • 85055415477 scopus 로고    scopus 로고
    • The Efficiency of the cold argon-oxygen plasma jet to reduce Escherichia coli and Streptococcus pyogenes from solid and liquid ambient
    • S.M. Mortazavi, A.H. Colagar, F. Sohbatzadeh, The Efficiency of the cold argon-oxygen plasma jet to reduce Escherichia coli and Streptococcus pyogenes from solid and liquid ambient, Iran 10 (2016) 19–30.
    • (2016) Iran , vol.10 , pp. 19-30
    • Mortazavi, S.M.1    Colagar, A.H.2    Sohbatzadeh, F.3
  • 56
    • 84893658709 scopus 로고    scopus 로고
    • Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: Evidence for the formation of peroxynitrite through a
    • P. Lukes, Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a, Plasma Sources Sci. Technol. 23 (2014) 15019, https://doi.org/10.1088/09630252/23/1/015019.
    • (2014) Plasma Sources Sci. Technol. , vol.23 , pp. 15019
    • Lukes, P.1
  • 57
    • 85059572896 scopus 로고    scopus 로고
    • Influence of organic matters on the inactivation efficacy of plasma-activated water against E. Coli O157: H7 and S. Aureus
    • Q. Xiang, C. Kang, D. Zhao, L. Niu, X. Liu, Influence of organic matters on the inactivation efficacy of plasma-activated water against E. coli O157: H7 and S. aureus, Food Control 99 (2019) 28–33, https://doi.org/10.1016/j.foodcont.2018.12.019.
    • (2019) Food Control , vol.99 , pp. 28-33
    • Xiang, Q.1    Kang, C.2    Zhao, D.3    Niu, L.4    Liu, X.5
  • 58
    • 85099092736 scopus 로고    scopus 로고
    • Degradation of antibiotic resistance contaminants in wastewater by atmospheric cold plasma: Kinetics and mechanisms
    • X. Liao, D. Liu, S. Chen, X. Ye, T. Ding, Degradation of antibiotic resistance contaminants in wastewater by atmospheric cold plasma: kinetics and mechanisms, Environ. Technol. 0 (2019) 1–14, https://doi.org/10.1080/09593330.2019. 1620866.
    • (2019) Environ. Technol. , pp. 1-14
    • Liao, X.1    Liu, D.2    Chen, S.3    Ye, X.4    Ding, T.5
  • 59
    • 33747840685 scopus 로고    scopus 로고
    • Bactericidal action of the reactive species produced by gas-discharge nonthermal plasma at atmospheric pressure: A review
    • L.F. Gaunt, C.B. Beggs, G.E. Georghiou, Bactericidal action of the reactive species produced by gas-discharge nonthermal plasma at atmospheric pressure: a review, IEEE Trans. Plasma Sci. IEEE Nucl. Plasma Sci. Soc. 34 (2006) 1257–1269, https://doi.org/10.1109/TPS.2006.878381.
    • (2006) IEEE Trans. Plasma Sci. IEEE Nucl. Plasma Sci. Soc. , vol.34 , pp. 1257-1269
    • Gaunt, L.F.1    Beggs, C.B.2    Georghiou, G.E.3
  • 60
    • 85051406848 scopus 로고    scopus 로고
    • Recent developments in cold plasma decontamination technology in the food industry
    • R. Mandal, A. Singh, A.P. Singh, Recent developments in cold plasma decontamination technology in the food industry, Trends Food Sci. Technol. 80 (2018) 93–103, https://doi.org/10.1016/j.tifs.2018.07.014.
    • (2018) Trends Food Sci. Technol. , vol.80 , pp. 93-103
    • Mandal, R.1    Singh, A.2    Singh, A.P.3
  • 61
    • 84901917562 scopus 로고    scopus 로고
    • Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal
    • 2014
    • A. Ayala, M.F. Muñoz, S. Argüelles, Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal, Oxid. Med. Cell. Longev. 2014 (2014) 360438,, https://doi.org/10.1155/2014/360438.
    • Oxid. Med. Cell. Longev. , vol.2014 , pp. 360438
    • Ayala, A.1    Muñoz, M.F.2    Argüelles, S.3
  • 62
    • 84953911388 scopus 로고    scopus 로고
    • Mechanisms of inactivation by high-voltage atmospheric cold plasma differ for Escherichia coli and Staphylococcus aureus
    • L. Han, S. Patil, P.J. Cullen, P. Bourke, Mechanisms of inactivation by high-voltage atmospheric cold plasma differ for Escherichia coli and Staphylococcus aureus, Appl. Environ. Microbiol. 82 (2016) 450–458, https://doi.org/10.1128/AEM.02660-15.
    • (2016) Appl. Environ. Microbiol. , vol.82 , pp. 450-458
    • Han, L.1    Patil, S.2    Cullen, P.J.3    Bourke, P.4
  • 63
    • 79952337526 scopus 로고    scopus 로고
    • Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli
    • S.G. Joshi, M. Cooper, A. Yost, U.K. Ercan, G. Fridman, G. Friedman, A. Fridman, A.D. Brooks, Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli, Antimicrob. Agents Chemother. 55 (2011) 1053–1062, https://doi.org/10.1128/AAC.01002-10.
    • (2011) Antimicrob. Agents Chemother. , vol.55 , pp. 1053-1062
    • Joshi, S.G.1    Cooper, M.2    Yost, A.3    Ercan, U.K.4    Fridman, G.5    Friedman, G.6    Fridman, A.7    Brooks, A.D.8
  • 64
    • 84880052102 scopus 로고    scopus 로고
    • Cold plasma effects on enzyme activity in a model food system
    • B. Surowsky, A. Fischer, O. Schlueter, D. Knorr, Cold plasma effects on enzyme activity in a model food system, Innov. Food Sci. Emerg. Technol. 19 (2013) 146–152, https://doi.org/10.1016/j.ifset.2013.04.002.
    • (2013) Innov. Food Sci. Emerg. Technol. , vol.19 , pp. 146-152
    • Surowsky, B.1    Fischer, A.2    Schlueter, O.3    Knorr, D.4
  • 65
    • 84992390154 scopus 로고    scopus 로고
    • Non-thermal atmospheric pressure plasma jet applied to inactivation of different microorganisms
    • T.M.C. Nishime, A.C. Borges, C.Y. Koga-ito, M. Machida, L.R.O. Hein, K.G. Kostov, Non-thermal atmospheric pressure plasma jet applied to inactivation of different microorganisms, Surf. Coat. Technol. 312 (2016) 19–24, https://doi.org/10.1016/ j.surfcoat.2016.07.076.
    • (2016) Surf. Coat. Technol. , vol.312 , pp. 19-24
    • Nishime, T.M.C.1    Borges, A.C.2    Koga-Ito, C.Y.3    Machida, M.4    Hein, L.R.O.5    Kostov, K.G.6
  • 66
    • 0038048194 scopus 로고    scopus 로고
    • Thermal and nonthermal regimes of gliding arc discharge in air flow
    • O. Mutaf-yardimci, A.V. Saveliev, A.A. Fridman, L.A. Kennedy, Thermal and nonthermal regimes of gliding arc discharge in air flow, J. Appl. 1632 (2000), https://doi.org/10.1063/1.372071.
    • (2000) J. Appl. , vol.1632
    • Mutaf-Yardimci, O.1    Saveliev, A.V.2    Fridman, A.A.3    Kennedy, L.A.4
  • 67
    • 80053526696 scopus 로고    scopus 로고
    • Note: An underwater multi-channel plasma array for water sterilization Note: An underwater multi-channel plasma array for water sterilization
    • Y. Yang, H. Kim, A. Starikovskiy, Y.I. Cho, A. Fridman, Y. Yang, H. Kim, A. Starikovskiy, Y.I. Cho, A. Fridman, Note: an underwater multi-channel plasma array for water sterilization Note: an underwater multi-channel plasma array for water sterilization, Rev. Sci. Instrum. 96103 (2013) 10–13, https://doi.org/10.1063/1.3633945.
    • (2013) Rev. Sci. Instrum. , pp. 10-13
    • Yang, Y.1    Kim, H.2    Starikovskiy, A.3    Cho, Y.I.4    Fridman, A.5    Yang, Y.6    Kim, H.7    Starikovskiy, A.8    Cho, Y.I.9    Fridman, A.10
  • 69
    • 84887818678 scopus 로고    scopus 로고
    • Mineralization of phenol in water by catalytic non-thermal plasma reactor – An eco-friendly approach for wastewater treatment
    • P. Manoj, K. Reddy, A. Dayamani, S. Mahammadunnisa, C. Subrahmanyam, Mineralization of phenol in water by catalytic non-thermal plasma reactor – an eco-friendly approach for wastewater treatment, Plasma Process. Polym. 19 (2013) 1010–1017, https://doi.org/10.1002/ppap.201300084.
    • (2013) Plasma Process. Polym. , vol.19 , pp. 1010-1017
    • Manoj, P.1    Reddy, K.2    Dayamani, A.3    Mahammadunnisa, S.4    Subrahmanyam, C.5
  • 71
    • 85006995515 scopus 로고    scopus 로고
    • 2 photocatalysis on inactivation of Escherichia coli Cells in Aqueous Media
    • 2 photocatalysis on inactivation of Escherichia coli Cells in Aqueous Media, Nat. Publ. Gr. 6 (2016) 39552, https://doi.org/10.1038/ srep39552.
    • (2016) Nat. Publ. Gr. , vol.6 , pp. 39552
    • Zhou, R.1    Zhou, R.2    Zhang, X.3    Li, J.4    Wang, X.5    Chen, Q.6
  • 72
    • 85065849536 scopus 로고    scopus 로고
    • Plasma inactivation of Aspergillus flavuson hazelnut surface in a diffuse barrier discharge using different working gases
    • S. Mo, V. Medvecká, M. Gregová, J. Tomeková, Ľ. Valík, A. Mikulajová, A. Zahoranová, Plasma inactivation of Aspergillus flavuson hazelnut surface in a diffuse barrier discharge using different working gases, Food Control 104 (2019) 256–261, https://doi.org/10.1016/j.foodcont.2019.05.003.
    • (2019) Food Control , vol.104 , pp. 256-261
    • Mo, S.1    Medvecká, V.2    Gregová, M.3    Tomeková, J.4    Valík, Ľ.5    Mikulajová, A.6    Zahoranová, A.7
  • 73
    • 0007498711 scopus 로고
    • The thermal death point in relation to time of typical thermophilic organisms
    • W.D. Bigelow, J.R. Esty, The thermal death point in relation to time of typical thermophilic organisms, J. Infect. Dis. 27 (1920) 602–617.
    • (1920) J. Infect. Dis. , vol.27 , pp. 602-617
    • Bigelow, W.D.1    Esty, J.R.2
  • 74
    • 19844373395 scopus 로고    scopus 로고
    • Degradation of substituted phenols in a hybrid gas - Liquid electrical discharge reactor
    • P. Lukes, B.R. Locke, Degradation of substituted phenols in a hybrid gas - liquid electrical discharge reactor, Ind. Eng. Chem. Res. 44 (2005) 2921–2930, https://doi.org/10.1021/ie0491342.
    • (2005) Ind. Eng. Chem. Res. , vol.44 , pp. 2921-2930
    • Lukes, P.1    Locke, B.R.2
  • 75
    • 80052734112 scopus 로고    scopus 로고
    • Advanced oxidation process for degradation of aqueous phenol in a dielectric barrier discharge reactor
    • E. Marotta, M. Schiorlin, X. Ren, M. Rea, C. Paradisi, Advanced oxidation process for degradation of aqueous phenol in a dielectric barrier discharge reactor, Plasma Process. Polym. 8 (2011) 867–875, https://doi.org/10.1002/ppap.201100036.
    • (2011) Plasma Process. Polym. , vol.8 , pp. 867-875
    • Marotta, E.1    Schiorlin, M.2    Ren, X.3    Rea, M.4    Paradisi, C.5
  • 76
    • 84885356353 scopus 로고    scopus 로고
    • Decomposition of organic dyes in water using non-thermal plasma
    • Bochum, Germany, last access: March 2013
    • D. Piroi, M. Magureanu, N.B. Mandache, V.I. Parvulescu, Decomposition of organic dyes in water using non-thermal plasma, 19th International Symposium on Plasma Chemistry, Bochum, Germany, 2009 Available at: http://www.ispc conference.org/ispcproc/papers/164.pdf (last access: March 2013).
    • (2009) 19th International Symposium on Plasma Chemistry
    • Piroi, D.1    Magureanu, M.2    Mandache, N.B.3    Parvulescu, V.I.4
  • 77
    • 85053057985 scopus 로고    scopus 로고
    • Modeling and optimizing Acid Orange 142 degradation in aqueous solution by non-thermal plasma
    • A. Fahmy, A. El-zomrawy, A.M. Saeed, A.Z. Sayed, M.A.E. El-arab, H.A. Shehata, Modeling and optimizing Acid Orange 142 degradation in aqueous solution by non-thermal plasma, Chemosphere 210 (2018) 102–109, https://doi.org/10.1016/j.chemosphere.2018.06.176.
    • (2018) Chemosphere , vol.210 , pp. 102-109
    • Fahmy, A.1    El-Zomrawy, A.2    Saeed, A.M.3    Sayed, A.Z.4    El-Arab, M.A.E.5    Shehata, H.A.6
  • 78
    • 84925964940 scopus 로고    scopus 로고
    • Atmospheric pressure nonthermal plasma jet for the degradation of methylene blue in aqueous medium
    • L. Chandana, P.M.K. Reddy, C. Subrahmanyam, Atmospheric pressure nonthermal plasma jet for the degradation of methylene blue in aqueous medium, Chem. Eng. J. 282 (2015) 116–122, https://doi.org/10.1016/j.cej.2015.02.027.
    • (2015) Chem. Eng. J. , vol.282 , pp. 116-122
    • Chandana, L.1    Reddy, P.M.K.2    Subrahmanyam, C.3
  • 79
    • 85066853135 scopus 로고    scopus 로고
    • Mechanism and optimization of non-thermal plasma-activated water for bacterial inactivation by underwater plasma jet and delivery of reactive species underwater by cylindrical DBD plasma
    • T. Royintarat, P. Seesuriyachan, D. Boonyawan, E. Ha, Mechanism and optimization of non-thermal plasma-activated water for bacterial inactivation by underwater plasma jet and delivery of reactive species underwater by cylindrical DBD plasma, Curr. Appl. Phys. 19 (2019) 1006–1014, https://doi.org/10.1016/j.cap.2019.05.020.
    • (2019) Curr. Appl. Phys. , vol.19 , pp. 1006-1014
    • Royintarat, T.1    Seesuriyachan, P.2    Boonyawan, D.3    Ha, E.4
  • 80
    • 85059783614 scopus 로고    scopus 로고
    • Enhanced removal of water pollutants by dielectric barrier discharge non-thermal plasma reactor
    • G. Iervolino, V. Vaiano, V. Palma, Enhanced removal of water pollutants by dielectric barrier discharge non-thermal plasma reactor, Sep. Purif. Technol. 251 (2019) 155–162, https://doi.org/10.1016/j.seppur.2019.01.007.
    • (2019) Sep. Purif. Technol. , vol.251 , pp. 155-162
    • Iervolino, G.1    Vaiano, V.2    Palma, V.3
  • 81
    • 85052107390 scopus 로고    scopus 로고
    • Decolorization of methylene blue in aqueous medium using dielectric barrier discharge plasma reactor
    • T. Czapka, A. Mirkowska, M. Palewicz, Decolorization of methylene blue in aqueous medium using dielectric barrier discharge plasma reactor, Prz. Elektrotechniczny 93 (2017) 188–191, https://doi.org/10.15199/48.2017.08.48.
    • (2017) Prz. Elektrotechniczny , vol.93 , pp. 188-191
    • Czapka, T.1    Mirkowska, A.2    Palewicz, M.3
  • 82
    • 85069559546 scopus 로고    scopus 로고
    • Atmospheric pressure helium plasma jet and its applications to methylene blue degradation
    • E. Abdel-fattah, Atmospheric pressure helium plasma jet and its applications to methylene blue degradation, J. Electrostat. 101 (2019) 103360, https://doi.org/10.1016/j.elstat.2019.103360.
    • (2019) J. Electrostat. , vol.101 , pp. 103360
    • Abdel-Fattah, E.1
  • 84
    • 84879556586 scopus 로고    scopus 로고
    • Degradation of various textile dyes as wastewater pollutants under dielectric barrier discharge plasma treatment
    • M. Tichonovas, E. Krugly, V. Racys, R. Hippler, V. Kauneliene, I. Stasiulaitiene, D. Martuzevicius, Degradation of various textile dyes as wastewater pollutants under dielectric barrier discharge plasma treatment, Chem. Eng. J. 229 (2013) 9–19, https://doi.org/10.1016/j.cej.2013.05.095.
    • (2013) Chem. Eng. J. , vol.229 , pp. 9-19
    • Tichonovas, M.1    Krugly, E.2    Racys, V.3    Hippler, R.4    Kauneliene, V.5    Stasiulaitiene, I.6    Martuzevicius, D.7
  • 85
    • 85075386867 scopus 로고    scopus 로고
    • Degradation of chlorobenzene in aqueous solution by pulsed power plasma: Mechanism and effect of operational parameters
    • J. Jose, L. Philip, Degradation of chlorobenzene in aqueous solution by pulsed power plasma: mechanism and effect of operational parameters, Biochem. Pharmacol. 7 (2019) 103476, https://doi.org/10.1016/j.jece.2019.103476.
    • (2019) Biochem. Pharmacol. , vol.7 , pp. 103476
    • Jose, J.1    Philip, L.2
  • 86
    • 84922552796 scopus 로고    scopus 로고
    • Advanced oxidation processes for in-situ production of hydrogen peroxide/Hydroxyl radical for textile wastewater treatment: A review
    • A. Asghar, A. Aziz, A. Raman, W. Mohd, A. Wan, Advanced oxidation processes for in-situ production of hydrogen peroxide/Hydroxyl radical for textile wastewater treatment: a review, J. Clean. Prod. 87 (2014) 826–838, https://doi.org/10.1016/j.jclepro.2014.09.010.
    • (2014) J. Clean. Prod. , vol.87 , pp. 826-838
    • Asghar, A.1    Aziz, A.2    Raman, A.3    Mohd, W.4    Wan, A.5
  • 87
    • 85062145327 scopus 로고    scopus 로고
    • Degradation of aniline in aqueous solution by dielectric barrier discharge plasma: Mechanism and degradation pathways
    • W. Sang, J. Cui, Y. Feng, L. Mei, Q. Zhang, D. Li, Degradation of aniline in aqueous solution by dielectric barrier discharge plasma: mechanism and degradation pathways, Chemosphere 223 (2019) 416–424, https://doi.org/10.1016/j.chemosphere.2019.02.029.
    • (2019) Chemosphere , vol.223 , pp. 416-424
    • Sang, W.1    Cui, J.2    Feng, Y.3    Mei, L.4    Zhang, Q.5    Li, D.6
  • 88
    • 85041622722 scopus 로고    scopus 로고
    • Degradation of aniline in aqueous solution using non-thermal plasma generated in microbubbles
    • Y. Liu, H. Zhang, J. Sun, J. Liu, X. Shen, J. Zhan, A. Zhang, S. Ognier, S. Cavadias, P. Li, Degradation of aniline in aqueous solution using non-thermal plasma generated in microbubbles, Chem. Eng. J. 345 (2018) 679–687, https://doi.org/10. 1016/j.cej.2018.01.057.
    • (2018) Chem. Eng. J. , vol.345 , pp. 679-687
    • Liu, Y.1    Zhang, H.2    Sun, J.3    Liu, J.4    Shen, X.5    Zhan, J.6    Zhang, A.7    Ognier, S.8    Cavadias, S.9    Li, P.10
  • 90
    • 27644505398 scopus 로고    scopus 로고
    • Phenol degradation by a nonpulsed diaphragm glow discharge in an aqueous solution
    • Y.J. Liu, X.Z. Jiang, Phenol degradation by a nonpulsed diaphragm glow discharge in an aqueous solution, Environ. Sci. Technol. 39 (2005) 8512–8517, https://doi.org/10.1021/es050875j.
    • (2005) Environ. Sci. Technol. , vol.39 , pp. 8512-8517
    • Liu, Y.J.1    Jiang, X.Z.2
  • 91
    • 84885348619 scopus 로고    scopus 로고
    • Reduction of Cr (VI) in aqueous solution with DC diaphragm glow discharge
    • X.X. Wang, X. Jin, M. Zhou, Z. Chen, K. Deng, Reduction of Cr (VI) in aqueous solution with DC diaphragm glow discharge, Electrochim. Acta 112 (2013) 692–697, https://doi.org/10.1016/j.electacta.2013.08.184.
    • (2013) Electrochim. Acta , vol.112 , pp. 692-697
    • Wang, X.X.1    Jin, X.2    Zhou, M.3    Chen, Z.4    Deng, K.5
  • 93
    • 85017000228 scopus 로고    scopus 로고
    • Mechanism of ampicillin degradation by non-thermal plasma treatment with FE-DBD
    • J.B. Smith, I. Adams, Mechanism of ampicillin degradation by non-thermal plasma treatment with FE-DBD, Plasma 1 (2018) 1–11, https://doi.org/10.3390/ plasma1010001.
    • (2018) Plasma , vol.1 , pp. 1-11
    • Smith, J.B.1    Adams, I.2
  • 94
    • 84921905505 scopus 로고    scopus 로고
    • Degradation of pharmaceutical contaminant ibuprofen in aqueous solution by cylindrical wetted-wall corona discharge
    • J. Zeng, B. Yang, X. Wang, Z. Li, X. Zhang, L. Lei, Degradation of pharmaceutical contaminant ibuprofen in aqueous solution by cylindrical wetted-wall corona discharge, Chem. Eng. Journall. 267 (2015) 282–288, https://doi.org/10.1016/j.cej.2015.01.030.
    • (2015) Chem. Eng. Journall. , vol.267 , pp. 282-288
    • Zeng, J.1    Yang, B.2    Wang, X.3    Li, Z.4    Zhang, X.5    Lei, L.6
  • 95
    • 84973098890 scopus 로고    scopus 로고
    • Non-thermal plasma treatment of Radix aconiti wastewater generated by traditional Chinese medicine processing
    • Y. Wen, J. Yi, S. Zhao, S. Jiang, Y. Chi, K. Liu, Non-thermal plasma treatment of Radix aconiti wastewater generated by traditional Chinese medicine processing, J. Environ. Sci. 44 (2016) 99–108, https://doi.org/10.1016/j.jes.2015.10.028.
    • (2016) J. Environ. Sci. , vol.44 , pp. 99-108
    • Wen, Y.1    Yi, J.2    Zhao, S.3    Jiang, S.4    Chi, Y.5    Liu, K.6
  • 96
    • 84884549002 scopus 로고    scopus 로고
    • Degradation of diclofenac in water using a pulsed corona discharge
    • D. Dobrin, C. Bradu, M. Magureanu, N.B. Mandache, V.I. Parvulescu, Degradation of diclofenac in water using a pulsed corona discharge, Chem. Eng. J. 234 (2013) 389–396, https://doi.org/10.1016/j.cej.2013.08.114.
    • (2013) Chem. Eng. J. , vol.234 , pp. 389-396
    • Dobrin, D.1    Bradu, C.2    Magureanu, M.3    Mandache, N.B.4    Parvulescu, V.I.5
  • 98
    • 84860883687 scopus 로고    scopus 로고
    • Carbamazepine removal from water by dielectric barrier discharge: Comparison of ex situ and in situ discharge on water
    • Y. Liu, S. Mei, D. Iya-sou, S. Cavadias, S. Ognier, Carbamazepine removal from water by dielectric barrier discharge: comparison of ex situ and in situ discharge on water, Chem. Eng. Process. Process Intensif. 56 (2012) 10–18, https://doi.org/10.1016/j.cep.2012.03.003.
    • (2012) Chem. Eng. Process. Process Intensif. , vol.56 , pp. 10-18
    • Liu, Y.1    Mei, S.2    Iya-Sou, D.3    Cavadias, S.4    Ognier, S.5
  • 99
    • 85028994454 scopus 로고    scopus 로고
    • Degradation and intermediates of diclofenac as instructive example for decomposition of recalcitrant pharmaceuticals by hydroxyl radicals generated with pulsed corona plasma in water
    • R. Banaschik, H. Jablonowski, P.J. Bednarski, J.F. Kolb, Degradation and intermediates of diclofenac as instructive example for decomposition of recalcitrant pharmaceuticals by hydroxyl radicals generated with pulsed corona plasma in water, J. Hazard. Mater. 342 (2018) 651–660, https://doi.org/10.1016/j.jhazmat.2017.08.058.
    • (2018) J. Hazard. Mater. , vol.342 , pp. 651-660
    • Banaschik, R.1    Jablonowski, H.2    Bednarski, P.J.3    Kolb, J.F.4
  • 101
    • 84892622379 scopus 로고    scopus 로고
    • Degradation of sulfadiazine antibiotics by water falling film dielectric barrier discharge
    • S. Rong, Y. Sun, Z. Zhao, Degradation of sulfadiazine antibiotics by water falling film dielectric barrier discharge, Chinese Chem. Lett. 25 (2014) 187–192, https://doi.org/10.1016/j.cclet.2013.11.003.
    • (2014) Chinese Chem. Lett. , vol.25 , pp. 187-192
    • Rong, S.1    Sun, Y.2    Zhao, Z.3
  • 103
    • 85010712176 scopus 로고    scopus 로고
    • Degradation of pharmaceutical diclofenac and ibuprofen in aqueous solution, a direct comparison of ozonation, photocatalysis, and non-thermal plasma
    • K. Hikmat, H. Aziz, H. Miessner, S. Mueller, D. Kalass, D. Moeller, I. Khorshid, M.A.M. Rashid, Degradation of pharmaceutical diclofenac and ibuprofen in aqueous solution, a direct comparison of ozonation, photocatalysis, and non-thermal plasma, Chem. Eng. J. 313 (2016) 1033–1041, https://doi.org/10.1016/j.cej.2016.10.137.
    • (2016) Chem. Eng. J. , vol.313 , pp. 1033-1041
    • Hikmat, K.1    Aziz, H.2    Miessner, H.3    Mueller, S.4    Kalass, D.5    Moeller, D.6    Khorshid, I.7    Rashid, M.A.M.8
  • 104
    • 67649271520 scopus 로고    scopus 로고
    • Comparative assessment of hydrophobic and hydrophilic membrane fouling in wastewater applications
    • N. Maximous, G. Nakhla, W. Wan, Comparative assessment of hydrophobic and hydrophilic membrane fouling in wastewater applications, J. Memb. Sci. 339 (2009) 93–99, https://doi.org/10.1016/j.memsci.2009.04.034.
    • (2009) J. Memb. Sci. , vol.339 , pp. 93-99
    • Maximous, N.1    Nakhla, G.2    Wan, W.3
  • 107
    • 0036533001 scopus 로고    scopus 로고
    • Modification of polysulfone membranes 4. Ammonia plasma treatment
    • M. Bryjak, I. Gancarz, G. Po, W. Tylus, Modification of polysulfone membranes 4. Ammonia plasma treatment, Eur. Polym. J. 38 (2002) 717–726, https://doi.org/10.1016/S0014-3057(01)00236-1.
    • (2002) Eur. Polym. J. , vol.38 , pp. 717-726
    • Bryjak, M.1    Gancarz, I.2    Po, G.3    Tylus, W.4
  • 108
    • 0042233809 scopus 로고    scopus 로고
    • Low fouling synthetic membranes by UV-assisted graft polymerization: Monomer selection to mitigate fouling by natural organic matter
    • M. Taniguchi, J.E. Kilduff, G. Belfort, Low fouling synthetic membranes by UV-assisted graft polymerization: monomer selection to mitigate fouling by natural organic matter, J. Memb. Sci. 222 (2003) 59–70. https://doi.org/10.1016/S0376-7388(03)00192-3.+,
    • (2003) J. Memb. Sci. , vol.222 , pp. 59-70
    • Taniguchi, M.1    Kilduff, J.E.2    Belfort, G.3
  • 109
    • 85051458073 scopus 로고    scopus 로고
    • Ultra fi ltration membranes modified by PSS deposition and plasma treatment for Cr (VI) removal
    • M. Ávila-rodríguez, P. Prádanos, Ultra fi ltration membranes modified by PSS deposition and plasma treatment for Cr (VI) removal, Sep. Purif. Technol. 210 (2019) 371–381. https://doi.org/10.1016/j.seppur.2018.08.023.
    • (2019) Sep. Purif. Technol. , vol.210 , pp. 371-381
    • Ávila-Rodríguez, M.1    Prádanos, P.2
  • 110
    • 33748767651 scopus 로고    scopus 로고
    • Fouling in membrane bioreactors used in wastewater treatment
    • P. Le-clech, V. Chen, T.A.G. Fane, Fouling in membrane bioreactors used in wastewater treatment, J. Membr. Sci. 284 (284) (2006) 17–53, https://doi.org/10.1016/j.memsci.2006.08.019.
    • (2006) J. Membr. Sci. , vol.284 , Issue.284 , pp. 17-53
    • Le-Clech, P.1    Chen, V.2    Fane, T.A.G.3
  • 112
    • 85075421286 scopus 로고    scopus 로고
    • Biodegradable poly (butylene succinate) nano fibrous membrane treated with oxygen plasma for superhydrophilicity
    • Wei, J. Gu, Y. Ye, M. Fang, J. Lang, D. Yang, Biodegradable poly (butylene succinate) nano fibrous membrane treated with oxygen plasma for superhydrophilicity, Surf. Coat. Technol. (2019) 125147, https://doi.org/10. 1016/j.surfcoat.2019.125147.
    • (2019) Surf. Coat. Technol. , pp. 125147
    • Wei, J.G.1    Ye, Y.2    Fang, M.3    Lang, J.4    Yang, D.5
  • 113
    • 84973917526 scopus 로고    scopus 로고
    • Antifouling pseudo-zwitterionic poly (vinylidene fluoride) membranes with efficient mixedcharge surface grafting via glow dielectric barrier discharge plasma-induced copolymerization
    • A. Venault, T.C. Wei, H.L. Shih, C.C. Yeh, A. Chinnathambi, S.A. Alharbi, S. Carretier, P. Aimar, J.Y. Lai, Y. Chang, Antifouling pseudo-zwitterionic poly (vinylidene fluoride) membranes with efficient mixedcharge surface grafting via glow dielectric barrier discharge plasma-induced copolymerization, J. Memb. Sci. 516 (2016) 13–25, https://doi.org/10.1016/j.memsci.2016.05.044.
    • (2016) J. Memb. Sci. , vol.516 , pp. 13-25
    • Venault, A.1    Wei, T.C.2    Shih, H.L.3    Yeh, C.C.4    Chinnathambi, A.5    Alharbi, S.A.6    Carretier, S.7    Aimar, P.8    Lai, J.Y.9    Chang, Y.10
  • 114
    • 77952730698 scopus 로고    scopus 로고
    • Polymer surface nano-structuring of reverse osmosis membranes for fouling resistance and improved flux performance
    • N.H. Lin, M. Kim, G.T. Lewis, Y. Cohen, Polymer surface nano-structuring of reverse osmosis membranes for fouling resistance and improved flux performance, J. Mater. Chem. 20 (2010) 4642–4652, https://doi.org/10.1039/b926918e.
    • (2010) J. Mater. Chem. , vol.20 , pp. 4642-4652
    • Lin, N.H.1    Kim, M.2    Lewis, G.T.3    Cohen, Y.4
  • 115
    • 79251605062 scopus 로고    scopus 로고
    • Surface hydrophilic modification of RO membranes by plasma polymerization for low organic fouling
    • L. Zou, I. Vidalis, D. Steele, A. Michelmore, S.P. Low, J.Q.J.C. Verberk, Surface hydrophilic modification of RO membranes by plasma polymerization for low organic fouling, J. Memb. Sci. 369 (2011) 420–428, https://doi.org/10.1016/j.memsci.2010.12.023.
    • (2011) J. Memb. Sci. , vol.369 , pp. 420-428
    • Zou, L.1    Vidalis, I.2    Steele, D.3    Michelmore, A.4    Low, S.P.5    Verberk, J.Q.J.C.6
  • 116
    • 85075880817 scopus 로고    scopus 로고
    • 2 plasma-treated carbon nanotube membranes for Sr(II) and Cs(I) in water and wastewater: Fit-for-purpose water treatment
    • 2 plasma-treated carbon nanotube membranes for Sr(II) and Cs(I) in water and wastewater: fit-for-purpose water treatment, Sep. Purif. Technol. 237 (2019) 116352, https://doi.org/10.1016/j.seppur.2019.116352.
    • (2019) Sep. Purif. Technol. , vol.237 , pp. 116352
    • Ali, S.1    Shah, I.A.2    Huang, H.3
  • 117
    • 85057250536 scopus 로고    scopus 로고
    • 2 plasma treatment of carbon nanotube membranes for enhanced removal of zinc from water and wastewater: A dynamic sorption- Filtration process
    • 2 plasma treatment of carbon nanotube membranes for enhanced removal of zinc from water and wastewater: a dynamic sorption- filtration process, Sci. Total Environ. 655 (2019) 1270–1278, https://doi.org/10.1016/j.scitotenv.2018.11.335.
    • (2019) Sci. Total Environ. , vol.655 , pp. 1270-1278
    • Ali, S.1    Ali, I.2    Ahmad, A.3    Nawab, J.4    Huang, H.5
  • 118
    • 23744441088 scopus 로고    scopus 로고
    • Efficiency of activated carbon to transform ozone into d OH radicals: Influence of operational parameters
    • U. Von Gunten, J. Rivera-utrilla, M. Sa, Efficiency of activated carbon to transform ozone into d OH radicals: influence of operational parameters, Water Res. 39 (2005) 3189–3198, https://doi.org/10.1016/j.watres.2005.05.026.
    • (2005) Water Res , vol.39 , pp. 3189-3198
    • von Gunten, U.1    Rivera-Utrilla, J.2    Sa, M.3
  • 119
    • 0142027111 scopus 로고    scopus 로고
    • Suspended activated carbon particles and ozone formation in aqueous-phase pulsed corona discharge reactors
    • D.R. Grymonpre, W.C. Finney, R.J. Clark, B.R. Locke, Suspended activated carbon particles and ozone formation in aqueous-phase pulsed corona discharge reactors, Ind. Eng. Chem. Res. 42 (2003) 5117–5134, https://doi.org/10.1021/ie020330n.
    • (2003) Ind. Eng. Chem. Res. , vol.42 , pp. 5117-5134
    • Grymonpre, D.R.1    Finney, W.C.2    Clark, R.J.3    Locke, B.R.4
  • 120
    • 85028918881 scopus 로고    scopus 로고
    • Degradation and mechanism analysis of bisphenol A in aqueous solutions by pulsed discharge plasma combined with activated carbon
    • H. Guo, H. Wang, Q. Wu, J. Li, Degradation and mechanism analysis of bisphenol A in aqueous solutions by pulsed discharge plasma combined with activated carbon, Sep. Purif. Technol. 190 (2018) 288–296, https://doi.org/10.1016/j.seppur.2017.09.002.
    • (2018) Sep. Purif. Technol. , vol.190 , pp. 288-296
    • Guo, H.1    Wang, H.2    Wu, Q.3    Li, J.4
  • 121
    • 84859537647 scopus 로고    scopus 로고
    • Application of double-dielectric barrier discharge plasma for removal of pentachlorophenol from wastewater coupling with activated carbon adsorption and simultaneous regeneration
    • N. Lu, J. Li, X. Wang, T. Wang, Y. Wu, Application of double-dielectric barrier discharge plasma for removal of pentachlorophenol from wastewater coupling with activated carbon adsorption and simultaneous regeneration, Plasma Chem. Plasma Process. 32 (2012) 109–121, https://doi.org/10.1007/s11090-011-9328-x.
    • (2012) Plasma Chem. Plasma Process. , vol.32 , pp. 109-121
    • Lu, N.1    Li, J.2    Wang, X.3    Wang, T.4    Wu, Y.5
  • 122
    • 56949103244 scopus 로고    scopus 로고
    • Degradation characteristics of toxic contaminant with modified activated carbons in aqueous pulsed discharge plasma process
    • X.L. Hao, X.W. Zhang, L.C. Lei, Degradation characteristics of toxic contaminant with modified activated carbons in aqueous pulsed discharge plasma process, Carbon 47 (2009) 153–161, https://doi.org/10.1016/j.carbon.2008.09.042.
    • (2009) Carbon , vol.47 , pp. 153-161
    • Hao, X.L.1    Zhang, X.W.2    Lei, L.C.3
  • 123
    • 77950020218 scopus 로고    scopus 로고
    • Methyl orange degradation by pulsed discharge in the presence of activated carbon fibers
    • Y. Zhang, B. Sun, S. Deng, Y. Wang, H. Peng, Y. Li, X. Zhang, Methyl orange degradation by pulsed discharge in the presence of activated carbon fibers, Chem. Eng. J. 159 (2010) 47–52, https://doi.org/10.1016/j.cej.2010.02.023.
    • (2010) Chem. Eng. J. , vol.159 , pp. 47-52
    • Zhang, Y.1    Sun, B.2    Deng, S.3    Wang, Y.4    Peng, H.5    Li, Y.6    Zhang, X.7
  • 124
    • 80052387032 scopus 로고    scopus 로고
    • Application of multiwalled carbon nanotubes in a wetted-wall corona-discharge reactor to enhance phenol decomposition in water
    • N. Sano, Y. Yamane, Y. Hori, T. Akatsuka, H. Tamon, Application of multiwalled carbon nanotubes in a wetted-wall corona-discharge reactor to enhance phenol decomposition in water, Ind. Eng. Chem. Res. 50 (2011) 9901–9909, https://doi.org/10.1021/ie102481n.
    • (2011) Ind. Eng. Chem. Res. , vol.50 , pp. 9901-9909
    • Sano, N.1    Yamane, Y.2    Hori, Y.3    Akatsuka, T.4    Tamon, H.5
  • 125
    • 85072040609 scopus 로고    scopus 로고
    • Degradation of methylene blue by dielectric barrier discharge plasma coupled with activated carbon supported on polyurethane foam
    • L. Wu, Q. Xie, Y. Lv, Z. Zhang, Z. Wu, X. Liang, M. Lu, Y. Nie, Degradation of methylene blue by dielectric barrier discharge plasma coupled with activated carbon supported on polyurethane foam, RSC Adv. 9 (2019) 25967–25975, https://doi.org/10.1039/c9ra05238k.
    • (2019) RSC Adv , vol.9 , pp. 25967-25975
    • Wu, L.1    Xie, Q.2    Lv, Y.3    Zhang, Z.4    Wu, Z.5    Liang, X.6    Lu, M.7    Nie, Y.8
  • 126
    • 85045025465 scopus 로고    scopus 로고
    • Removal of tetracycline antibiotics from wastewater by pulsed corona dis- Charge plasma coupled with natural soil particles
    • C. Wang, G. Qu, T. Wang, F. Deng, D. Liang, Removal of tetracycline antibiotics from wastewater by pulsed corona dis- charge plasma coupled with natural soil particles, Chem. Eng. J. 346 (2018) 159–170, https://doi.org/10.1016/j.cej.2018.03.149.
    • (2018) Chem. Eng. J. , vol.346 , pp. 159-170
    • Wang, C.1    Qu, G.2    Wang, T.3    Deng, F.4    Liang, D.5
  • 127
    • 85071360254 scopus 로고    scopus 로고
    • High-performance of plasma-catalysis hybrid system for toluene removal in air using supported Au nanocatalysts
    • B. Zhu, L. Zhang, M. Li, Y. Yan, X. Zhang, Y. Zhu, High-performance of plasma-catalysis hybrid system for toluene removal in air using supported Au nanocatalysts, Chem. Eng. J. 381 (2020) 122599, https://doi.org/10.1016/j.cej.2019. 122599.
    • Chem. Eng. J. , vol.381 , Issue.2020 , pp. 122599
    • Zhu, B.1    Zhang, L.2    Li, M.3    Yan, Y.4    Zhang, X.5    Zhu, Y.6
  • 128
    • 85054842685 scopus 로고    scopus 로고
    • Extraordinary catalysis induced by titanium foil cathode plasma for degradation of water pollutant
    • C. Li, Y. Rao, B. Zhang, K. Huang, X. Cao, Extraordinary catalysis induced by titanium foil cathode plasma for degradation of water pollutant, Chemosphere 214 (2019) 341–348, https://doi.org/10.1016/j.chemosphere.2018.09.138.
    • (2019) Chemosphere , vol.214 , pp. 341-348
    • Li, C.1    Rao, Y.2    Zhang, B.3    Huang, K.4    Cao, X.5
  • 129
    • 84961298950 scopus 로고    scopus 로고
    • A novel TiO2 combined pulsed diaphragm discharge system for phenol degradation
    • D. Jianjin, H. Jue, X. Lin, W. Yuanbin, Z. Chao, M. Yuedong, Z. Chengxu, A novel TiO2 combined pulsed diaphragm discharge system for phenol degradation, Plasma Sci. Technol. 17 (2015) 303, https://doi.org/10.1088/1009-0630/17/4/08.
    • (2015) Plasma Sci. Technol. , vol.17 , pp. 303
    • Jianjin, D.1    Jue, H.2    Lin, X.3    Yuanbin, W.4    Chao, Z.5    Yuedong, M.6    Chengxu, Z.7
  • 132
    • 85070308703 scopus 로고    scopus 로고
    • Multi-catalysis of nano-zinc oxide for bisphenol A degradation in a dielectric barrier discharge plasma system: Effect and mechanism
    • X. Yan, C. Yi, Y. Wang, W. Cao, D. Mao, Q. Ou, P. Shen, H. Wang, Multi-catalysis of nano-zinc oxide for bisphenol A degradation in a dielectric barrier discharge plasma system: effect and mechanism, Sep. Purif. Technol. 231 (2020) 115897, https://doi.org/10.1016/j.seppur.2019.115897.
    • Sep. Purif. Technol. , vol.231 , Issue.2020 , pp. 115897
    • Yan, X.1    Yi, C.2    Wang, Y.3    Cao, W.4    Mao, D.5    Ou, Q.6    Shen, P.7    Wang, H.8
  • 133
    • 84929645828 scopus 로고    scopus 로고
    • Enhanced discolouration of methyl violet 10B in a gliding arc plasma reactor by the maghemite nanoparticles used as heterogeneous catalyst
    • A. Tiya, E. Acayanka, G. Lontio, S. Laminsi, E.M. Gaigneaux, Enhanced discolouration of methyl violet 10B in a gliding arc plasma reactor by the maghemite nanoparticles used as heterogeneous catalyst, J. Environ. Chem. Eng. 496 (2014) 1–8, https://doi.org/10.1016/j.jece.2014.11.016.
    • (2014) J. Environ. Chem. Eng. , vol.496 , pp. 1-8
    • Tiya, A.1    Acayanka, E.2    Lontio, G.3    Laminsi, S.4    Gaigneaux, E.M.5
  • 135
    • 84897032790 scopus 로고    scopus 로고
    • Catalytic non-thermal plasma reactor for mineralization of endosulfan in aqueous medium: A green approach for the treatment of pesticide contaminated water
    • P.M.K. Reddy, S. Mahammadunnisa, C. Subrahmanyam, Catalytic non-thermal plasma reactor for mineralization of endosulfan in aqueous medium: a green approach for the treatment of pesticide contaminated water, Chem. Eng. J. 238 (2014) 157–163, https://doi.org/10.1016/j.cej.2013.08.087.
    • (2014) Chem. Eng. J. , vol.238 , pp. 157-163
    • Reddy, P.M.K.1    Mahammadunnisa, S.2    Subrahmanyam, C.3
  • 137
    • 85066098524 scopus 로고    scopus 로고
    • 3 catalysis for synergetic degradation of ciprofloxacin in water: Synergetic mechanism and degradation pathway
    • 3 catalysis for synergetic degradation of ciprofloxacin in water: synergetic mechanism and degradation pathway, Chemosphere 230 (2019) 190–200, https://doi.org/10.1016/j.chemosphere.2019.05.011.
    • (2019) Chemosphere , vol.230 , pp. 190-200
    • Guo, H.1    Jiang, N.2    Wang, H.3    Shang, K.4    Lu, N.5    Li, J.6
  • 138
    • 84934956068 scopus 로고    scopus 로고
    • Comparative study of TiO2 and ZnO photocatalysts for the enhancement of ozone generation by surface dielectric barrier discharge in air
    • J.K.S. Pekárek, J. Mikes, Comparative study of TiO 2 and ZnO photocatalysts for the enhancement of ozone generation by surface dielectric barrier discharge in air, Appl. Catal. A Gen. J. 502 (2015) 122–128, https://doi.org/10.1016/j.apcata.2015.06.003.
    • (2015) Appl. Catal. A Gen. J. , vol.502 , pp. 122-128
    • Pekárek, J.K.S.1    Mikes, J.2
  • 139
    • 85030128738 scopus 로고    scopus 로고
    • 3+ as co-catalysts for enhanced phenol degradation in pulsed discharge system
    • 3+ as co-catalysts for enhanced phenol degradation in pulsed discharge system, Appl. Catal. B Environ. 221 (2017) 521–529, https://doi.org/10.1016/j.apcatb.2017.09. 047.
    • (2017) Appl. Catal. B Environ. , vol.221 , pp. 521-529
    • Duan, L.1    Jiang, N.2    Lu, N.3    Shang, K.4    Li, J.5    Wu, Y.6
  • 140
    • 85029145712 scopus 로고    scopus 로고
    • 2+ activated persulfate ignited degradation of aqueous crystal violet: Degradation mechanism and artificial neural network modeling
    • 2+ activated persulfate ignited degradation of aqueous crystal violet: degradation mechanism and artificial neural network modeling, Sep. Purif. Technol. 191 (2017) 75–85, https://doi.org/10.1016/j.seppur.2017.09.016.
    • (2017) Sep. Purif. Technol. , vol.191 , pp. 75-85
    • Chen, J.1    Feng, J.2    Lu, S.3    Shen, Z.4    Du, Y.5    Peng, L.6    Nian, P.7    Yuan, S.8    Zhang, A.9
  • 141
    • 84880080568 scopus 로고    scopus 로고
    • The catalytic effect of metal ions on the degradation of 4-chlorophenol induced by an aqueous pulsed discharge plasma
    • H. Xiaolong, Z. Xingwang, L. Lecheng, The catalytic effect of metal ions on the degradation of 4-chlorophenol induced by an aqueous pulsed discharge plasma, Plasma Sci. Technol. 15 (2013) 678, https://doi.org/10.1088/1009-0630/15/7/14.
    • (2013) Plasma Sci. Technol. , vol.15 , pp. 678
    • Xiaolong, H.1    Xingwang, Z.2    Lecheng, L.3
  • 142
    • 85058690421 scopus 로고    scopus 로고
    • Percarbonate promoted antibiotic decomposition in dielectric barrier discharge plasma
    • S. Tang, D. Yuan, Y. Rao, M. Li, G. Shi, J. Gu, T. Zhang, Percarbonate promoted antibiotic decomposition in dielectric barrier discharge plasma, J. Hazard. Mater. 366 (2018) 669–676, https://doi.org/10.1016/j.jhazmat.2018.12.056.
    • (2018) J. Hazard. Mater. , vol.366 , pp. 669-676
    • Tang, S.1    Yuan, D.2    Rao, Y.3    Li, M.4    Shi, G.5    Gu, J.6    Zhang, T.7
  • 143
    • 85033460196 scopus 로고    scopus 로고
    • Degradation of phenanthrene in aqueous solution by a persulfate / percarbonate system activated with CA chelated-Fe (II)
    • S. Yu, X. Gu, S. Lu, Y. Xue, X. Zhang, M. Xu, Z. Qiu, Q. Sui, Degradation of phenanthrene in aqueous solution by a persulfate / percarbonate system activated with CA chelated-Fe (II), Chem. Eng. J. 333 (2017) 122–131, https://doi.org/10.1016/j.cej.2017.09.158.
    • (2017) Chem. Eng. J. , vol.333 , pp. 122-131
    • Yu, S.1    Gu, X.2    Lu, S.3    Xue, Y.4    Zhang, X.5    Xu, M.6    Qiu, Z.7    Sui, Q.8
  • 144
    • 85062893084 scopus 로고    scopus 로고
    • 3 composites: Mechanism and degradation pathway
    • 3 composites: mechanism and degradation pathway, J. Hazard. Mater. 371 (2019) 666–676, https://doi.org/10.1016/j.jhazmat.2019.03.051.
    • (2019) J. Hazard. Mater. , vol.371 , pp. 666-676
    • Jiang, N.1    Wang, H.2    Lu, N.3    Li, J.4    Wu, Y.5
  • 145
    • 84966339654 scopus 로고    scopus 로고
    • 2/activated carbon fibers: Effect of operating parameters and byproducts identification
    • 2/activated carbon fibers: effect of operating parameters and byproducts identification, Chem. Eng. J. 300 (2016) 36–46, https://doi.org/10.1016/j.cej.2016.04.041.
    • (2016) Chem. Eng. J. , vol.300 , pp. 36-46
    • Wang, J.1    Sun, Y.2    Feng, J.3    Xin, L.4    Ma, J.5
  • 146
    • 84996743367 scopus 로고    scopus 로고
    • 2-rGO nanocomposite: Mechanism and degradation pathway
    • 2-rGO nanocomposite: mechanism and degradation pathway, J. Hazard. Mater. 323 (2016) 719–729, https://doi.org/10.1016/j.jhazmat.2016.10.008.
    • (2016) J. Hazard. Mater. , vol.323 , pp. 719-729
    • Zhang, G.1    Sun, Y.2    Zhang, C.3    Yu, Z.4
  • 147
    • 85062151021 scopus 로고    scopus 로고
    • 2 nanocomposites for synergetic degradation of fluoroquinolone antibiotic in pulsed discharge plasma system
    • 2 nanocomposites for synergetic degradation of fluoroquinolone antibiotic in pulsed discharge plasma system, Appl. Catal. B Environ. 248 (2019) 552–566, https://doi.org/10.1016/j.apcatb.2019.01.052.
    • (2019) Appl. Catal. B Environ. , vol.248 , pp. 552-566
    • Zhang, G.1    Sun, Y.2    Zhang, C.3    Yu, Z.4
  • 148
    • 85064658664 scopus 로고    scopus 로고
    • 3 nanocomposites for synergistic degradation of antibiotic enrofloxacin in water
    • 3 nanocomposites for synergistic degradation of antibiotic enrofloxacin in water, Chem. Eng. J. 372 (2019) 226–240, https://doi.org/10.1016/j.cej.2019.04.119.
    • (2019) Chem. Eng. J. , vol.372 , pp. 226-240
    • Guo, H.1    Jiang, N.2    Wang, H.3    Lu, N.4    Shang, K.5    Li, J.6    Wu, Y.7
  • 150
    • 85055701903 scopus 로고    scopus 로고
    • Aqueous methylparaben degradation by dielectric barrier discharge induced non-thermal plasma combined with ZnO-rGO nanosheets
    • P. Nian, L. Peng, J. Feng, X. Han, B. Cui, S. Lu, J. Zhang, Q. Liu, A. Zhang, Aqueous methylparaben degradation by dielectric barrier discharge induced non-thermal plasma combined with ZnO-rGO nanosheets, Sep. Purif. Technol. 211 (2018) 832–842, https://doi.org/10.1016/j.seppur.2018.10.048.
    • (2018) Sep. Purif. Technol. , vol.211 , pp. 832-842
    • Nian, P.1    Peng, L.2    Feng, J.3    Han, X.4    Cui, B.5    Lu, S.6    Zhang, J.7    Liu, Q.8    Zhang, A.9
  • 152
    • 85060729077 scopus 로고    scopus 로고
    • Highly efficient degradation of azo dye Orange G using laterite soil as catalyst under irradiation of non-thermal plasma
    • J. Tarkwa, E. Acayanka, B. Jiang, N. Oturan, G.Y. Kamgang, S. Laminsi, M.A. Oturan, Highly efficient degradation of azo dye Orange G using laterite soil as catalyst under irradiation of non-thermal plasma, Appl. Catal. B Environ. 246 (2019) 211–220, https://doi.org/10.1016/j.apcatb.2019.01.066.
    • (2019) Appl. Catal. B Environ. , vol.246 , pp. 211-220
    • Tarkwa, J.1    Acayanka, E.2    Jiang, B.3    Oturan, N.4    Kamgang, G.Y.5    Laminsi, S.6    Oturan, M.A.7
  • 153
    • 85040193239 scopus 로고    scopus 로고
    • Synthesis of Al2O3-Y2O3 ceramic coatings on Fe- Cr-Al wire via aqueous
    • Y. Zhang, C. Chen, W. Chen, H. Cheng, Y. Wang, L. Wang, SYnthesis of Al2O3-Y2O3 Ceramic Coatings on Fe- Cr-Al Wire via Aqueous Cathodic Plasma Electrolysis 56 (2017), pp. 15058–15064, https://doi.org/10.1021/acs.iecr. 7b03661.
    • (2017) Cathodic Plasma Electrolysis , vol.56 , pp. 15058-15064
    • Zhang, Y.1    Chen, C.2    Chen, W.3    Cheng, H.4    Wang, Y.5    Wang, L.6
  • 154
    • 84914816137 scopus 로고    scopus 로고
    • Chemical reactions in liquid induced by atmospheric-pressure dc glow discharge in contact with liquid
    • F. Tochikubo, Y. Shimokawa, N. Shirai, S. Uchida, Chemical reactions in liquid induced by atmospheric-pressure dc glow discharge in contact with liquid, J. Appl. Phys. 53 (2014) 126201, https://doi.org/10.7567/JJAP.53.126201.
    • (2014) J. Appl. Phys. , vol.53 , pp. 126201
    • Tochikubo, F.1    Shimokawa, Y.2    Shirai, N.3    Uchida, S.4
  • 155
    • 85063430386 scopus 로고    scopus 로고
    • Bifunctional copper cathode induced oxidation of glycerol with liquid plasma discharge
    • Y. Rao, X. Cao, C. Li, L. Xiao, Bifunctional copper cathode induced oxidation of glycerol with liquid plasma discharge, Sep. Purif. Technol. 220 (2019) 328–333, https://doi.org/10.1016/j.seppur.2019.03.043.
    • (2019) Sep. Purif. Technol. , vol.220 , pp. 328-333
    • Rao, Y.1    Cao, X.2    Li, C.3    Xiao, L.4
  • 157
    • 85094145796 scopus 로고    scopus 로고
    • 2+ ion
    • 2+ ion, AIP Conf. Proc. 1904 (2018) 20028, https://doi.org/10.1051/e3sconf/20186701012.
    • (2018) AIP Conf. Proc. , vol.1904 , pp. 20028
    • Zainah, N.S.1
  • 158
    • 84882697721 scopus 로고    scopus 로고
    • Removal of dimethyl sulfide by the combination of non-thermal plasma and biological process
    • Z.S. Wei, H.Q. Li, J.C. He, Q.H. Ye, Q.R. Huang, Y.W. Luo, Removal of dimethyl sulfide by the combination of non-thermal plasma and biological process, Bioresour. Technol. 146 (2013) 451–456, https://doi.org/10.1016/j.biortech.2013.07.114.
    • (2013) Bioresour. Technol. , vol.146 , pp. 451-456
    • Wei, Z.S.1    Li, H.Q.2    He, J.C.3    Ye, Q.H.4    Huang, Q.R.5    Luo, Y.W.6
  • 159
    • 0032552154 scopus 로고    scopus 로고
    • Degradation of perchloroethylene and dichlorophenol by pulsed-electric discharge and bioremediation
    • D.C. Yee, S. Chauhan, E. Yankelevich, V. Bystritskii, T.K. Wood, Degradation of perchloroethylene and dichlorophenol by pulsed-electric discharge and bioremediation, Biotechnol. Bioeng. 59 (1998) 438–442, https://doi.org/10.1002/(SICI)1097-0290(19980820)59:4.
    • (1998) Biotechnol. Bioeng. , vol.59 , pp. 438-442
    • Yee, D.C.1    Chauhan, S.2    Yankelevich, E.3    Bystritskii, V.4    Wood, T.K.5
  • 161
    • 85058813707 scopus 로고    scopus 로고
    • Synergistic 1,4-dioxane removal by non-thermal plasma followed by biodegradation
    • Y. Xiong, Q. Zhang, R. Wandell, S. Bresch, H. Wang, R. Bruce, Y. Tang, Synergistic 1,4-dioxane removal by non-thermal plasma followed by biodegradation, Chem. Eng. J. 361 (2018) 519–527, https://doi.org/10.1016/j.cej.2018.12.094.
    • (2018) Chem. Eng. J. , vol.361 , pp. 519-527
    • Xiong, Y.1    Zhang, Q.2    Wandell, R.3    Bresch, S.4    Wang, H.5    Bruce, R.6    Tang, Y.7
  • 162
    • 85049588384 scopus 로고    scopus 로고
    • Evaluation of the effect of cold atmospheric plasma on oxygenases activities for application in water treatment technologies
    • Y. Todorova, I. Yotinov, Y. Topalova, E. Benova, Evaluation of the effect of cold atmospheric plasma on oxygenases activities for application in water treatment technologies, Environ. Technol. 40 (2018) 3783–3792, https://doi.org/10.1080/09593330.2018.1491631.
    • (2018) Environ. Technol. , vol.40 , pp. 3783-3792
    • Todorova, Y.1    Yotinov, I.2    Topalova, Y.3    Benova, E.4
  • 163
    • 67449113578 scopus 로고    scopus 로고
    • Ultrasound-assisted plasma: A novel technique for inactivation of aquatic microorganisms
    • S.H. Chen, H.L. Chen, Ultrasound-assisted plasma: a novel technique for inactivation of aquatic microorganisms, Environ. Sci. Technol. 43 (2009) 4493–4497, https://doi.org/10.1021/es900345z.
    • (2009) Environ. Sci. Technol. , vol.43 , pp. 4493-4497
    • Chen, S.H.1    Chen, H.L.2
  • 164
    • 85046034267 scopus 로고    scopus 로고
    • Preceding treatment of non-thermal plasma (NTP) assisted the bactericidal effect of ultrasound on Staphylococcus aureus
    • X. Liao, J. Li, A.I. Muhammad, Y. Suo, J. Ahn, D. Liu, S. Chen, Y. Hu, X. Ye, T. Ding, Preceding treatment of non-thermal plasma (NTP) assisted the bactericidal effect of ultrasound on Staphylococcus aureus, Food Control 90 (2018) 241–248, https://doi.org/10.1016/j.foodcont.2018.03.008.
    • (2018) Food Control , vol.90 , pp. 241-248
    • Liao, X.1    Li, J.2    Muhammad, A.I.3    Suo, Y.4    Ahn, J.5    Liu, D.6    Chen, S.7    Hu, Y.8    Ye, X.9    Ding, T.10
  • 165
    • 84944865470 scopus 로고    scopus 로고
    • Degradation of methylparaben in water by corona plasma coupled with ozonation
    • D. Dobrin, M. Magureanu, C. Bradu, N.B. Mandache, Degradation of methylparaben in water by corona plasma coupled with ozonation, Environ. Sci. Pollut. Res. 21 (2014) 12190–12197, https://doi.org/10.1007/s11356-014-2964-y.
    • (2014) Environ. Sci. Pollut. Res. , vol.21 , pp. 12190-12197
    • Dobrin, D.1    Magureanu, M.2    Bradu, C.3    Mandache, N.B.4
  • 166
    • 85050917125 scopus 로고    scopus 로고
    • Combining ultrafiltration and non-thermal plasma for low energy degradation of pharmaceuticals from conventionally treated wastewater
    • J.O. Back, T. Obholzer, K. Winkler, S. Jabornig, M. Rupprich, Combining ultrafiltration and non-thermal plasma for low energy degradation of pharmaceuticals from conventionally treated wastewater, J. Environ. Chem. Eng. 6 (2018) 7377–7385, https://doi.org/10.1016/j.jece.2018.07.047.
    • (2018) J. Environ. Chem. Eng. , vol.6 , pp. 7377-7385
    • Back, J.O.1    Obholzer, T.2    Winkler, K.3    Jabornig, S.4    Rupprich, M.5
  • 168
    • 84923363431 scopus 로고    scopus 로고
    • Membrane damage and active but nonculturable state in liquid cultures of Escherichia coli treated with an atmospheric pressure plasma jet
    • E. Dolezalova, P. Lukes, Membrane damage and active but nonculturable state in liquid cultures of Escherichia coli treated with an atmospheric pressure plasma jet, Bioelectrochemistry 103 (2014) 7–14, https://doi.org/10.1016/j.bioelechem.2014.08.018.
    • (2014) Bioelectrochemistry , vol.103 , pp. 7-14
    • Dolezalova, E.1    Lukes, P.2
  • 169
    • 84896128258 scopus 로고    scopus 로고
    • Bacterial inactivation by high-voltage atmospheric cold plasma: Influence of process parameters and effects on cell leakage and DNA
    • H. Lu, S. Patil, K.M. Keener, P.J. Cullen, P. Bourke, Bacterial inactivation by high-voltage atmospheric cold plasma: influence of process parameters and effects on cell leakage and DNA, J. Appl. Microbiol. 116 (2013) 784–794, https://doi.org/10.1111/jam.12426.
    • (2013) J. Appl. Microbiol. , vol.116 , pp. 784-794
    • Lu, H.1    Patil, S.2    Keener, K.M.3    Cullen, P.J.4    Bourke, P.5
  • 170
    • 84979503611 scopus 로고    scopus 로고
    • Evaluation of treatment and disinfection of water using cold atmospheric plasma
    • Z. Rashmei, H. Bornasi, M. Ghoranneviss, Evaluation of treatment and disinfection of water using cold atmospheric plasma, J. Water Health 14 (2016) 609–616, https://doi.org/10.2166/wh.2016.216.
    • (2016) J. Water Health , vol.14 , pp. 609-616
    • Rashmei, Z.1    Bornasi, H.2    Ghoranneviss, M.3
  • 171
    • 85057597157 scopus 로고    scopus 로고
    • Inactivation of Pseudomonas aeruginosa and Methicillin-resistant Staphylococcus aureus in an open water system with ozone generated by a compact, atmospheric DBD plasma reactor
    • B. Choudhury, N. Mastanaiah, J.A. Johnson, Inactivation of Pseudomonas aeruginosa and Methicillin-resistant Staphylococcus aureus in an open water system with ozone generated by a compact, atmospheric DBD plasma reactor, Sci. Rep. 8 (2018) 17573, https://doi.org/10.1038/s41598-018-36003-0.
    • (2018) Sci. Rep. , vol.8 , pp. 17573
    • Choudhury, B.1    Mastanaiah, N.2    Johnson, J.A.3
  • 172
    • 85060751211 scopus 로고    scopus 로고
    • Modeling the inactivation of Bacillus subtilis spores during cold plasma sterilization
    • G. Mendes-oliveira, J.L. Jensen, K.M. Keener, O.H. Campanella, Modeling the inactivation of Bacillus subtilis spores during cold plasma sterilization, Innov. Food Sci. Emerg. Technol. 52 (2019) 334–342, https://doi.org/10.1016/j.ifset.2018.12. 011.
    • (2019) Innov. Food Sci. Emerg. Technol. , vol.52 , pp. 334-342
    • Mendes-Oliveira, G.1    Jensen, J.L.2    Keener, K.M.3    Campanella, O.H.4
  • 173
    • 85065612866 scopus 로고    scopus 로고
    • 2plasma treatment against Listeria monocytogenes cells: Sublethal injury and inactivation kinetics
    • 2plasma treatment against Listeria monocytogenes cells: Sublethal injury and inactivation kinetics, LWT - Food Sci. Technol. 111 (2019) 318–327, https://doi.org/10.1016/j.lwt.2019.05.041.
    • (2019) LWT - Food Sci. Technol. , vol.111 , pp. 318-327
    • Pan, Y.1    Cheng, J.2    Lv, X.3    Sun, D.4
  • 174
    • 84960118755 scopus 로고    scopus 로고
    • Inactivation of bacteria by the application of spark plasma in produced water
    • H. Kim, K. Wright, J. Piccioni, D.J. Cho, Y.I. Cho, Inactivation of bacteria by the application of spark plasma in produced water, Sep. Purif. Technol. 156 (2015) 544–552, https://doi.org/10.1016/j.seppur.2015.10.047.
    • (2015) Sep. Purif. Technol. , vol.156 , pp. 544-552
    • Kim, H.1    Wright, K.2    Piccioni, J.3    Cho, D.J.4    Cho, Y.I.5
  • 175
    • 84983541812 scopus 로고    scopus 로고
    • Influence of the electrode material on the decontamination ef fi cacy of dielectric barrier discharge gas plasma treatments towards Listeria monocytogenes and Escherichia coli
    • L. Ragni, A. Berardinelli, E. Iaccheri, G. Gozzi, C. Cevoli, L. Vannini, Influence of the electrode material on the decontamination ef fi cacy of dielectric barrier discharge gas plasma treatments towards Listeria monocytogenes and Escherichia coli, Innov. Food Sci. Emerg. Technol. 37 (2016) 170–176, https://doi.org/10.1016/j.ifset.2016.07.029.
    • (2016) Innov. Food Sci. Emerg. Technol. , vol.37 , pp. 170-176
    • Ragni, L.1    Berardinelli, A.2    Iaccheri, E.3    Gozzi, G.4    Cevoli, C.5    Vannini, L.6
  • 176
    • 77950192922 scopus 로고    scopus 로고
    • Inactivation of bacteria in an aqueous environment by a direct-current, cold- Atmospheric-pressure air plasma microjet
    • F. Liu, P. Sun, N. Bai, Y. Tian, H. Zhou, S. Wei, Inactivation of bacteria in an aqueous environment by a direct-current, cold- atmospheric-pressure air plasma microjet, Plasma Process. Polym. 7 (2010) 231–236, https://doi.org/10.1002/ppap.200900070.
    • (2010) Plasma Process. Polym. , vol.7 , pp. 231-236
    • Liu, F.1    Sun, P.2    Bai, N.3    Tian, Y.4    Zhou, H.5    Wei, S.6
  • 177
    • 84906337267 scopus 로고    scopus 로고
    • Non-thermal plasma degradation of anthraquinonic dye in water: Oxidation pathways and effect of natural matrices
    • H. Ghodbane, A.Y. Nikiforov, O. Hamdaoui, P. Surmont, F. Lynen, G. Willems, C. Leys, Non-thermal plasma degradation of anthraquinonic dye in water: oxidation pathways and effect of natural matrices, J. Adv. Oxid. Technol. 17 (2014) 372–384, https://doi.org/10.1515/jaots-2014-0223.
    • (2014) J. Adv. Oxid. Technol. , vol.17 , pp. 372-384
    • Ghodbane, H.1    Nikiforov, A.Y.2    Hamdaoui, O.3    Surmont, P.4    Lynen, F.5    Willems, G.6    Leys, C.7
  • 178
    • 84990818569 scopus 로고    scopus 로고
    • Mechanism and comparison of needle-type non-thermal direct and indirect atmospheric pressure plasma jets on the degradation of dyes
    • P. Attri, M. Yusupov, J.H. Park, L.P. Lingamdinne, Mechanism and comparison of needle-type non-thermal direct and indirect atmospheric pressure plasma jets on the degradation of dyes, Nat. Publ. Gr. 6 (2016) 34419, https://doi.org/10.1038/ srep34419.
    • (2016) Nat. Publ. Gr. , vol.6 , pp. 34419
    • Attri, P.1    Yusupov, M.2    Park, J.H.3    Lingamdinne, L.P.4
  • 179
    • 84865303171 scopus 로고    scopus 로고
    • Degradation of azo dye using non-thermal plasma advanced oxidation process in a circulatory airtight reactor system
    • B. Jiang, J. Zheng, Q. Liu, M. Wu, Degradation of azo dye using non-thermal plasma advanced oxidation process in a circulatory airtight reactor system, Chem. Eng. J. 204–206 (2012) 32–39, https://doi.org/10.1016/j.cej.2012.07.088.
    • (2012) Chem. Eng. J. , vol.204-206 , pp. 32-39
    • Jiang, B.1    Zheng, J.2    Liu, Q.3    Wu, M.4
  • 180
    • 85017306501 scopus 로고    scopus 로고
    • Microwave atmospheric pressure plasma jets for wastewater treatment: Degradation of methylene blue as a model dye
    • M.C. García, M. Mora, D. Esquivel, J.E. Foster, A. Rodero, C. Jiménez-sanchidrián, F.J. Romero-salguero, Microwave atmospheric pressure plasma jets for wastewater treatment: degradation of methylene blue as a model dye, Chemosphere 180 (2017) 239–246, https://doi.org/10.1016/j.chemosphere.2017.03.126.
    • (2017) Chemosphere , vol.180 , pp. 239-246
    • García, M.C.1    Mora, M.2    Esquivel, D.3    Foster, J.E.4    Rodero, A.5    Jiménez-Sanchidrián, C.6    Romero-Salguero, F.J.7
  • 181
    • 85076085867 scopus 로고    scopus 로고
    • Degradation of indigo carmine in water induced by non-thermal plasma, ozone and hydrogen peroxide: A comparative study and by-product identification
    • A. Paula, S. Crema, L. Diamantaras, P. Borges, A. Micke, N.A. Debacher, Degradation of indigo carmine in water induced by non-thermal plasma, ozone and hydrogen peroxide: a comparative study and by-product identification, Chemosphere 244 (2020) 125502, https://doi.org/10.1016/j.chemosphere.2019. 125502.
    • Chemosphere , vol.244 , Issue.2020 , pp. 125502
    • Paula, A.1    Crema, S.2    Diamantaras, L.3    Borges, P.4    Micke, A.5    Debacher, N.A.6
  • 182
    • 84992088219 scopus 로고    scopus 로고
    • Effective degradation of organic water pollutants by atmospheric nonthermal plasma torch and analysis of degradation process
    • A.S. Bansode, S.E. More, E. Ahmad, S. Satpute, A. Ahmad, S.V. Bhoraskar, V.L. Mathe, Effective degradation of organic water pollutants by atmospheric nonthermal plasma torch and analysis of degradation process, Chemosphere 167 (2017) 396–405, https://doi.org/10.1016/j.chemosphere.2016.09.089.
    • (2017) Chemosphere , vol.167 , pp. 396-405
    • Bansode, A.S.1    More, S.E.2    Ahmad, E.3    Satpute, S.4    Ahmad, A.5    Bhoraskar, S.V.6    Mathe, V.L.7
  • 183
    • 84964404013 scopus 로고    scopus 로고
    • Degradation of reactive blue 19 by needle-plate non-therma API gas atmospheres: Kinetics and plasma different responsible species study assisted by CFD
    • Y. Sun, Y. Liu, R. Li, G. Xue, S. Ognier, Degradation of reactive blue 19 by needle-plate non-therma API gas atmospheres: kinetics and plasma different responsible species study assisted by CFD, Chemosphere 155 (2020) 243–249, https://doi.org/10.1016/j.chemosphere.2016.04.026.
    • Chemosphere , vol.155 , Issue.2020 , pp. 243-249
    • Sun, Y.1    Liu, Y.2    Li, R.3    Xue, G.4    Ognier, S.5
  • 185
    • 85053304565 scopus 로고    scopus 로고
    • A novel plasma-assisted rotating disk reactor: Enhancement of degradation efficiency of rhodamine B
    • Y. Cai, Y. Luo, B.C. Sun, T.X. Fan, G.W. Chu, J.F. Chen, A novel plasma-assisted rotating disk reactor: enhancement of degradation efficiency of rhodamine B, Chem. Eng. J. 377 (2018) 119897, https://doi.org/10.1016/j.cej.2018.09.058.
    • (2018) Chem. Eng. J. , vol.377 , pp. 119897
    • Cai, Y.1    Luo, Y.2    Sun, B.C.3    Fan, T.X.4    Chu, G.W.5    Chen, J.F.6
  • 187
    • 84879298732 scopus 로고    scopus 로고
    • Degradation kinetics and mechanism of emerging contaminants in water by dielectric barrier discharge non-thermal plasma: The case of 17 β -Estradiol
    • L. Gao, L. Sun, S. Wan, Z. Yu, M. Li, Degradation kinetics and mechanism of emerging contaminants in water by dielectric barrier discharge non-thermal plasma: the case of 17 β -Estradiol, Chem. Eng. J. 228 (2013) 790–798, https://doi.org/10.1016/j.cej.2013.05.079.
    • (2013) Chem. Eng. J. , vol.228 , pp. 790-798
    • Gao, L.1    Sun, L.2    Wan, S.3    Yu, Z.4    Li, M.5
  • 189
    • 85064603897 scopus 로고    scopus 로고
    • Air non-thermal plasma treatment of the herbicides mesotrione and metolachlor in water
    • A. Giardina, F. Tampieri, O. Biondo, E. Marotta, C. Paradisi, Air non-thermal plasma treatment of the herbicides mesotrione and metolachlor in water, Chem. Eng. J. 372 (2019) 171–180, https://doi.org/10.1016/j.cej.2019.04.098.
    • (2019) Chem. Eng. J. , vol.372 , pp. 171-180
    • Giardina, A.1    Tampieri, F.2    Biondo, O.3    Marotta, E.4    Paradisi, C.5
  • 190
    • 85061650598 scopus 로고    scopus 로고
    • Kinetics and products of air plasma induced oxidation in water of imidacloprid and thiamethoxam treated individually and in mixture, plasma chem
    • F. Tampieri, A. Durighello, O. Biondo, M. Gąsior, Kinetics and products of air plasma induced oxidation in water of imidacloprid and thiamethoxam treated individually and in mixture, plasma chem, Plasma Process. 39 (2019) 545–559, https://doi.org/10.1007/s11090-019-09960-1.
    • (2019) Plasma Process , vol.39 , pp. 545-559
    • Tampieri, F.1    Durighello, A.2    Biondo, O.3    Gąsior, M.4
  • 191
    • 85061650598 scopus 로고    scopus 로고
    • Kinetics and products of air plasma induced oxidation in water of imidacloprid and thiamethoxam treated individually and in mixture
    • F. Tampieri, A. Durighello, O. Biondo, M. Gąsior, Kinetics and products of air plasma induced oxidation in water of imidacloprid and thiamethoxam treated individually and in mixture, Plasma Chem. Plasma Process. 39 (2019) 545–559, https://doi.org/10.1007/s11090-019-09960-1.
    • (2019) Plasma Chem. Plasma Process. , vol.39 , pp. 545-559
    • Tampieri, F.1    Durighello, A.2    Biondo, O.3    Gąsior, M.4
  • 192
    • 84958260915 scopus 로고    scopus 로고
    • Products and mechanism of verapamil removal in water by air non-thermal plasma treatment
    • S. Krishna, E. Ceriani, E. Marotta, A. Giardina, P. Špatenka, C. Paradisi, Products and mechanism of verapamil removal in water by air non-thermal plasma treatment, Chem. Eng. J. 292 (2016) 35–41, https://doi.org/10.1016/j.cej.2016.01. 108.
    • (2016) Chem. Eng. J. , vol.292 , pp. 35-41
    • Krishna, S.1    Ceriani, E.2    Marotta, E.3    Giardina, A.4    Špatenka, P.5    Paradisi, C.6
  • 193
    • 85053059683 scopus 로고    scopus 로고
    • Degradation of norfloxacin in aqueous solution by atmospheric-pressure non-thermal plasma: Mechanism and degradation pathways
    • Q. Zhang, H. Zhang, Q. Zhang, Q. Huang, Degradation of norfloxacin in aqueous solution by atmospheric-pressure non-thermal plasma: mechanism and degradation pathways, Chemosphere 210 (2018) 433–439, https://doi.org/10.1016/j.chemosphere.2018.07.035.
    • (2018) Chemosphere , vol.210 , pp. 433-439
    • Zhang, Q.1    Zhang, H.2    Zhang, Q.3    Huang, Q.4
  • 194
  • 195
    • 0343963097 scopus 로고    scopus 로고
    • Gas phase corona discharges for oxidation of phenol in an aqueous solution
    • W.F.L.M. Hoeben, E.M. van Veldhuizen, W.R. Rutgers, G.M.W. Kroesen, Gas phase corona discharges for oxidation of phenol in an aqueous solution, J. Phys. D Appl. Phys. 32 (1999) L133–L137, https://doi.org/10.1088/0022-3727/32/24/103.
    • (1999) J. Phys. D Appl. Phys. , vol.32 , pp. L133-L137
    • Hoeben, W.F.L.M.1    van Veldhuizen, E.M.2    Rutgers, W.R.3    Kroesen, G.M.W.4
  • 196
    • 2542426887 scopus 로고    scopus 로고
    • A kinetic model of degradation of phenol in water by direct contact of gas nonpulsed corona discharge
    • B.N. Sano, J. Fujikawa, D. Yamamoto, T. Kanki, A. Toyoda, A kinetic model of degradation of phenol in water by direct contact of gas nonpulsed corona discharge, Chem. Eng. Technol. 27 (2004) 548–552, https://doi.org/10.1002/ceat. 200401804.
    • (2004) Chem. Eng. Technol. , vol.27 , pp. 548-552
    • Sano, B.N.1    Fujikawa, J.2    Yamamoto, D.3    Kanki, T.4    Toyoda, A.5
  • 198
    • 85031809933 scopus 로고    scopus 로고
    • Dielectric barrier discharge plasma as excellent method for Perchloroethylene removal from aqueous environments: Degradation kinetic and parameters modeling
    • M. Karimaei, R. Nabizadeh, B. Shokri, M.R. Khani, K. Yaghmaeian, A. Mesdaghinia, A. Mahvi, S. Nazmara, Dielectric barrier discharge plasma as excellent method for Perchloroethylene removal from aqueous environments: degradation kinetic and parameters modeling, J. Mol. Liq. 248 (2017) 177–183, https://doi.org/10.1016/j.molliq.2017.10.038.
    • (2017) J. Mol. Liq. , vol.248 , pp. 177-183
    • Karimaei, M.1    Nabizadeh, R.2    Shokri, B.3    Khani, M.R.4    Yaghmaeian, K.5    Mesdaghinia, A.6    Mahvi, A.7    Nazmara, S.8
  • 199
    • 84905030885 scopus 로고    scopus 로고
    • Wetted-wall corona discharge induced degradation of sulfadiazine antibiotics in aqueous solution
    • S. Rong, Y. Sun, Wetted-wall corona discharge induced degradation of sulfadiazine antibiotics in aqueous solution, J. Chem. Technol. Biotechnol. 89 (2014) 1351–1359, https://doi.org/10.1002/jctb.4211.
    • (2014) J. Chem. Technol. Biotechnol. , vol.89 , pp. 1351-1359
    • Rong, S.1    Sun, Y.2
  • 200
    • 77953022869 scopus 로고    scopus 로고
    • Degradation of pharmaceutical compound pentoxifylline in water by non-thermal plasma treatment
    • M. Magureanu, D. Piroi, N. Bogdan, V. David, A. Medvedovici, V.I. Parvulescu, Degradation of pharmaceutical compound pentoxifylline in water by non-thermal plasma treatment, Water Res. 44 (2010) 3445–3453, https://doi.org/10.1016/j.watres.2010.03.020.
    • (2010) Water Res , vol.44 , pp. 3445-3453
    • Magureanu, M.1    Piroi, D.2    Bogdan, N.3    David, V.4    Medvedovici, A.5    Parvulescu, V.I.6
  • 201
    • 85028714069 scopus 로고    scopus 로고
    • Oxidation of clofibric acid in aqueous solution using a nonthermal plasma discharge or gamma radiation
    • J. Madureira, E. Ceriani, N. Pinhão, E. Marotta, R. Melo, S. Cabo, C. Paradisi, F.M.A. Margaça, Oxidation of clofibric acid in aqueous solution using a nonthermal plasma discharge or gamma radiation, Chemosphere 187 (2017) 395–403, https://doi.org/10.1016/j.chemosphere.2017.08.109.
    • (2017) Chemosphere , vol.187 , pp. 395-403
    • Madureira, J.1    Ceriani, E.2    Pinhão, N.3    Marotta, E.4    Melo, R.5    Cabo, S.6    Paradisi, C.7    Margaça, F.M.A.8
  • 202
    • 84874018360 scopus 로고    scopus 로고
    • Removal of iopromide from an aqueous solution using dielectric barrier discharge Ognier b
    • Y. Liu, Y. Sun, J. Hu, J. He, S. Mei, Removal of iopromide from an aqueous solution using dielectric barrier discharge Ognier b, J. Chem. Technol. Biotechnol. 88 (2012) 468–473, https://doi.org/10.1002/jctb.3851.
    • (2012) J. Chem. Technol. Biotechnol. , vol.88 , pp. 468-473
    • Liu, Y.1    Sun, Y.2    Hu, J.3    He, J.4    Mei, S.5
  • 203
    • 79959526394 scopus 로고    scopus 로고
    • Degradation of persistent pharmaceuticals in aqueous solutions by a positive dielectric barrier discharge treatment
    • H. Krause, B. Schweiger, E. Prinz, J. Kim, U. Steinfeld, Degradation of persistent pharmaceuticals in aqueous solutions by a positive dielectric barrier discharge treatment, J. Electrostat. 69 (2011) 333–338, https://doi.org/10.1016/j.elstat.2011.04.011.
    • (2011) J. Electrostat. , vol.69 , pp. 333-338
    • Krause, H.1    Schweiger, B.2    Prinz, E.3    Kim, J.4    Steinfeld, U.5
  • 204
    • 61849181517 scopus 로고    scopus 로고
    • Degradation of the endocrine disrupting chemicals (EDCs) carbamazepine, clofibric acid, and iopromide by corona discharge over water
    • H. Krause, B. Schweiger, J. Schuhmacher, S. Scholl, U. Steinfeld, Degradation of the endocrine disrupting chemicals (EDCs) carbamazepine, clofibric acid, and iopromide by corona discharge over water, Chemosphere 75 (2009) 163–168, https://doi.org/10.1016/j.chemosphere.2008.12.020.
    • (2009) Chemosphere , vol.75 , pp. 163-168
    • Krause, H.1    Schweiger, B.2    Schuhmacher, J.3    Scholl, S.4    Steinfeld, U.5
  • 205
    • 85094169446 scopus 로고    scopus 로고
    • Degradation of paracetamol in aqueous solution by non thermal plasma, 15th High Press
    • Y. Baloul, O. Aubry, C. Colas, Degradation of paracetamol in aqueous solution by non thermal plasma, 15th High Press. Low Temp. Plasma Chem. Symp. 3 (2016).
    • (2016) Low Temp. Plasma Chem. Symp. , vol.3
    • Baloul, Y.1    Aubry, O.2    Colas, C.3
  • 206
    • 85059783614 scopus 로고    scopus 로고
    • Enhanced removal of water pollutants by dielectric barrier discharge non- Thermal plasma reactor
    • G. Iervolino, V. Vaiano, V. Palma, Enhanced removal of water pollutants by dielectric barrier discharge non- thermal plasma reactor, Sep. Purif. Technol. 215 (2019) 155–162, https://doi.org/10.1016/j.seppur.2019.01.007.
    • (2019) Sep. Purif. Technol. , vol.215 , pp. 155-162
    • Iervolino, G.1    Vaiano, V.2    Palma, V.3
  • 207
    • 84924246474 scopus 로고    scopus 로고
    • Elucidation of the degradation pathways of sulfonamide antibiotics in a dielectric barrier discharge plasma system
    • K. Kim, S. Kyu, Y. Sun, Elucidation of the degradation pathways of sulfonamide antibiotics in a dielectric barrier discharge plasma system, Chem. Eng. J. 271 (2015) 31–42, https://doi.org/10.1016/j.cej.2015.02.073.
    • (2015) Chem. Eng. J. , vol.271 , pp. 31-42
    • Kim, K.1    Kyu, S.2    Sun, Y.3
  • 208
    • 84872807596 scopus 로고    scopus 로고
    • Degradation of veterinary antibiotics by dielectric barrier discharge plasma
    • K. Kim, C. Yang, Y.S. Mok, Degradation of veterinary antibiotics by dielectric barrier discharge plasma, Chem. Eng. J. 219 (2013) 19–27, https://doi.org/10.1016/j.cej.2012.12.079.
    • (2013) Chem. Eng. J. , vol.219 , pp. 19-27
    • Kim, K.1    Yang, C.2    Mok, Y.S.3
  • 209
    • 85094156240 scopus 로고    scopus 로고
    • Degradation and mineralization of ciprofloxacin by gas-liquid discharge nonthermal plasma
    • S. Hu, Xinghao Liu, Zimu Xu, Jiaquan Wang, Yunxia Li, Jie Shen, Yan Lan, Degradation and mineralization of ciprofloxacin by gas-liquid discharge nonthermal plasma, J. Biomol. Struct. Dyn. 21 (2016) 15501, https://doi.org/10. 1080/07391102.2020.1758788.
    • (2016) J. Biomol. Struct. Dyn. , vol.21 , pp. 15501
    • Hu, S.1    Liu, X.2    Xu, Z.3    Wang, J.4    Li, Y.5    Shen, J.6    Lan, Y.7
  • 210
    • 85028918881 scopus 로고    scopus 로고
    • Degradation and mechanism analysis of bisphenol A in aqueous solutions by pulsed discharge plasma combined with activated carbon
    • H. Guo, H. Wang, Q. Wu, J. Li, Degradation and mechanism analysis of bisphenol A in aqueous solutions by pulsed discharge plasma combined with activated carbon, Sep. Purif. Technol. 190 (2018) 288–296, https://doi.org/10.1016/j.seppur.2017.09.002.
    • (2018) Sep. Purif. Technol. , vol.190 , pp. 288-296
    • Guo, H.1    Wang, H.2    Wu, Q.3    Li, J.4
  • 211
    • 0033167013 scopus 로고    scopus 로고
    • Aqueous-phase pulsed streamer corona reactor using suspended activated carbon particles for phenol oxidation: Model-data comparison
    • D.R. Grymonpré, W.C. Finney, B.R. Locke, Aqueous-phase pulsed streamer corona reactor using suspended activated carbon particles for phenol oxidation: model-data comparison, Chem. Eng. Sci. 54 (1999) 3095–3105, https://doi.org/10.1016/S0009-2509(98)00428-X.
    • (1999) Chem. Eng. Sci. , vol.54 , pp. 3095-3105
    • Grymonpré, D.R.1    Finney, W.C.2    Locke, B.R.3
  • 212
    • 84863173039 scopus 로고    scopus 로고
    • Comparison of catalysis of different activated carbon in pulsed discharge reactor
    • Y. Zhang, X. Xiong, Y. Han, W. Zhou, Comparison of catalysis of different activated carbon in pulsed discharge reactor, Procedia Environ, Sci. 11 (2011) 668–673, https://doi.org/10.1016/j.proenv.2011.12.104.
    • (2011) Procedia Environ, Sci , vol.11 , pp. 668-673
    • Zhang, Y.1    Xiong, X.2    Han, Y.3    Zhou, W.4
  • 213
    • 84873043377 scopus 로고    scopus 로고
    • 2 nanotubes with pulsed plasma for phenol degradation
    • 2 nanotubes with pulsed plasma for phenol degradation, Chem. Eng. J. 215–216 (2013) 261–268, https://doi.org/10.1016/j.cej.2012.11.045.
    • (2013) Chem. Eng. J. , vol.215-216 , pp. 261-268
    • Zhang, Y.1    Xin, Q.2    Cong, Y.3    Wang, Q.4    Jiang, B.5
  • 214
    • 85002802113 scopus 로고    scopus 로고
    • Removal of caffeine from water by combining dielectric barrier discharge (DBD) plasma with goethite
    • J. Wang, Y. Sun, H. Jiang, J. Feng, Removal of caffeine from water by combining dielectric barrier discharge (DBD) plasma with goethite, J. Saudi Chem. Soc. 21 (2017) 545–557, https://doi.org/10.1016/j.jscs.2016.08.002.
    • (2017) J. Saudi Chem. Soc. , vol.21 , pp. 545-557
    • Wang, J.1    Sun, Y.2    Jiang, H.3    Feng, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.