메뉴 건너뛰기




Volumn , Issue , 2016, Pages 158-165

A two-stage approach for extending event detection to new types via neural networks

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL LINGUISTICS;

EID: 85090157933     PISSN: 0736587X     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (51)

References (34)
  • 2
    • 80053342456 scopus 로고    scopus 로고
    • Domain adaptation with structural correspondence learning
    • John Blitzer, Ryan McDonald, and Fernando Pereira. 2006. Domain adaptation with structural correspondence learning. In EMNLP.
    • (2006) EMNLP
    • Blitzer, John1    McDonald, Ryan2    Pereira, Fernando3
  • 4
    • 84943802037 scopus 로고    scopus 로고
    • Event extraction via dynamic multi-pooling convolutional neural networks
    • Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and Jun Zhao. 2015. Event extraction via dynamic multi-pooling convolutional neural networks. In ACL-IJCNLP.
    • (2015) ACL-IJCNLP
    • Chen, Yubo1    Xu, Liheng2    Liu, Kang3    Zeng, Daojian4    Zhao, Jun5
  • 5
    • 84860513476 scopus 로고    scopus 로고
    • Frustratingly easy domain adaptation
    • Hal Daume III. 2007. Frustratingly easy domain adaptation. In ACL.
    • (2007) ACL
    • Daume, Hal1
  • 7
    • 77956584723 scopus 로고    scopus 로고
    • Predicting unknown time arguments based on cross-event propagation
    • Prashant Gupta and Heng Ji. 2009. Predicting unknown time arguments based on cross-event propagation. In ACL-IJCNLP.
    • (2009) ACL-IJCNLP
    • Gupta, Prashant1    Ji, Heng2
  • 9
    • 85167403109 scopus 로고    scopus 로고
    • Modeling textual cohesion for event extraction
    • Ruihong Huang and Ellen Riloff. 2012. Modeling textual cohesion for event extraction. In AAAI.
    • (2012) AAAI
    • Huang, Ruihong1    Riloff, Ellen2
  • 10
    • 84859903043 scopus 로고    scopus 로고
    • Refining event extraction through cross-document inference
    • Heng Ji and Ralph Grishman. 2008. Refining event extraction through cross-document inference. In ACL.
    • (2008) ACL
    • Ji, Heng1    Grishman, Ralph2
  • 11
    • 57949113459 scopus 로고    scopus 로고
    • A two-stage approach to domain adaptation for statistical classfiers
    • Jing Jiang and ChengXiang Zhai. 2007. A two-stage approach to domain adaptation for statistical classfiers. In CIKM.
    • (2007) CIKM
    • Jiang, Jing1    Zhai, ChengXiang2
  • 12
    • 85185409699 scopus 로고    scopus 로고
    • Multi-task transfer learning for weakly-supervised relation extraction
    • Jing Jiang. 2009. Multi-task transfer learning for weakly-supervised relation extraction. In ACLIJCNLP.
    • (2009) ACLIJCNLP
    • Jiang, Jing1
  • 13
    • 84894653924 scopus 로고    scopus 로고
    • Joint event extraction via structured prediction with global features
    • Qi Li, Heng Ji, and Liang Huang. 2013. Joint event extraction via structured prediction with global features. In ACL.
    • (2013) ACL
    • Li, Qi1    Ji, Heng2    Huang, Liang3
  • 14
    • 84961290471 scopus 로고    scopus 로고
    • Constructing information networks using one single model
    • Qi Li, Heng Ji, Yu Hong, and Sujian Li. 2014b. Constructing information networks using one single model. In EMNLP.
    • (2014) EMNLP
    • Li, Qi1    Ji, Heng2    Hong, Yu3    Li, Sujian4
  • 15
    • 84859985050 scopus 로고    scopus 로고
    • Using document level cross-event inference to improve event extraction
    • Shasha Liao and Ralph Grishman. 2010. Using document level cross-event inference to improve event extraction. In ACL.
    • (2010) ACL
    • Liao, Shasha1    Grishman, Ralph2
  • 16
    • 84866876887 scopus 로고    scopus 로고
    • Acquiring topic features to improve event extraction: In preselected and balanced collections
    • Shasha Liao and Ralph Grishman. 2011. Acquiring topic features to improve event extraction: In preselected and balanced collections. In RANLP.
    • (2011) RANLP
    • Liao, Shasha1    Grishman, Ralph2
  • 19
    • 85083951332 scopus 로고    scopus 로고
    • Efficient estimation of word representations in vector space
    • Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013a. Efficient estimation of word representations in vector space. In ICLR.
    • (2013) ICLR
    • Mikolov, Tomas1    Chen, Kai2    Corrado, Greg3    Dean, Jeffrey4
  • 21
    • 84869485038 scopus 로고    scopus 로고
    • Boosting automatic event extraction from the literature using domain adaptation and coreference resolution
    • Makoto Miwa, Paul Thompson, and Sophia Ananiadou. 2013. Boosting automatic event extraction from the literature using domain adaptation and coreference resolution. In Bioinformatics.
    • (2013) Bioinformatics
    • Miwa, Makoto1    Thompson, Paul2    Ananiadou, Sophia3
  • 22
    • 84906930736 scopus 로고    scopus 로고
    • Employing word representations and regularization for domain adaptation of relation extraction
    • Thien Huu Nguyen and Ralph Grishman. 2014. Employing word representations and regularization for domain adaptation of relation extraction. In ACL.
    • (2014) ACL
    • Nguyen, Thien Huu1    Grishman, Ralph2
  • 23
    • 84944030435 scopus 로고    scopus 로고
    • Event detection and domain adaptation with convolutional neural networks
    • Thien Huu Nguyen and Ralph Grishman. 2015. Event detection and domain adaptation with convolutional neural networks. In ACL-IJCNLP.
    • (2015) ACL-IJCNLP
    • Nguyen, Thien Huu1    Grishman, Ralph2
  • 24
    • 84943777848 scopus 로고    scopus 로고
    • Semantic representations for domain adaptation: A case study on the tree kernel-based method for relation extraction
    • Thien Huu Nguyen, Barbara Plank, and Ralph Grishman. 2015a. Semantic representations for domain adaptation: A case study on the tree kernel-based method for relation extraction. In ACL-IJCNLP.
    • (2015) ACL-IJCNLP
    • Nguyen, Thien Huu1    Plank, Barbara2    Grishman, Ralph3
  • 26
    • 80053430767 scopus 로고    scopus 로고
    • A unified model of phrasal and sentential evidence for information extraction
    • Siddharth Patwardhan and Ellen Riloff. 2009. A unified model of phrasal and sentential evidence for information extraction. In EMNLP.
    • (2009) EMNLP
    • Patwardhan, Siddharth1    Riloff, Ellen2
  • 27
    • 84907345507 scopus 로고    scopus 로고
    • Embedding semantic similarity in tree kernels for domain adaptation of relation extraction
    • Barbara Plank and Alessandro Moschitti. 2013. Embedding semantic similarity in tree kernels for domain adaptation of relation extraction. In ACL.
    • (2013) ACL
    • Plank, Barbara1    Moschitti, Alessandro2
  • 28
    • 83055180631 scopus 로고    scopus 로고
    • Joint inference for knowledge extraction from biomedical literature
    • Hoifung Poon and Lucy Vanderwende. 2010. Joint inference for knowledge extraction from biomedical literature. In NAACL-HLT.
    • (2010) NAACL-HLT
    • Poon, Hoifung1    Vanderwende, Lucy2
  • 29
    • 80053284695 scopus 로고    scopus 로고
    • Fast and robust joint models for biomedical event extraction
    • Sebastian Riedel and Andrew McCallum. 2011. Fast and robust joint models for biomedical event extraction. In EMNLP.
    • (2011) EMNLP
    • Riedel, Sebastian1    McCallum, Andrew2
  • 30
    • 84888276650 scopus 로고    scopus 로고
    • Robust biomedical event extraction with dual decomposition and minimal domain adaptation
    • Sebastian Riedel and Andrew McCallum. 2011b. Robust biomedical event extraction with dual decomposition and minimal domain adaptation. In BioNLP Shared Task 2011 Workshop.
    • (2011) BioNLP Shared Task 2011 Workshop
    • Riedel, Sebastian1    McCallum, Andrew2
  • 32
    • 80053495924 scopus 로고    scopus 로고
    • Word representations: A simple and general method for semi-supervised learning
    • Joseph Turian, Lev-Arie Ratinov, and Yoshua Bengio. 2010. Word representations: A simple and general method for semi-supervised learning. In ACL.
    • (2010) ACL
    • Turian, Joseph1    Ratinov, Lev-Arie2    Bengio, Yoshua3
  • 33
    • 84961302979 scopus 로고    scopus 로고
    • Relieving the computational bottleneck: Joint inference for event extraction with high-dimensional features
    • Deepak Venugopal, Chen Chen, Vibhav Gogate, and Vincent Ng. 2014. Relieving the computational bottleneck: Joint inference for event extraction with high-dimensional features. In EMNLP.
    • (2014) EMNLP
    • Venugopal, Deepak1    Chen, Chen2    Gogate, Vibhav3    Ng, Vincent4
  • 34
    • 85121234657 scopus 로고    scopus 로고
    • Event trigger identification for biomedical events extraction using domain knowledge
    • Deyu Zhou, Dayou Zhong, and Yulan He. 2014. Event trigger identification for biomedical events extraction using domain knowledge. In Bioinformatics Journal.
    • (2014) Bioinformatics Journal
    • Zhou, Deyu1    Zhong, Dayou2    He, Yulan3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.