메뉴 건너뛰기




Volumn 1, Issue , 2015, Pages 635-644

Semantic representations for domain adaptation: A case study on the tree kernel-based method for relation extraction

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL LINGUISTICS; EXTRACTION; FORESTRY; SEMANTICS;

EID: 84943777848     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.3115/v1/p15-1062     Document Type: Conference Paper
Times cited : (35)

References (45)
  • 1
    • 80053232678 scopus 로고    scopus 로고
    • Nouns are vectors, adjectives are matrices: Representing adjective-noun constructions in semantic space
    • Marco Baroni and Roberto Zamparelli. 2010. Nouns are vectors, adjectives are matrices: Representing adjective-noun constructions in semantic space. In EMNLP.
    • (2011) EMNLP
    • Baroni, M.1    Zamparelli, R.2
  • 2
    • 70350686154 scopus 로고    scopus 로고
    • The WaCky wide web: A collection of very large linguistically processed web-crawled corpora
    • Marco Baroni, Silvia Bernardini, Adriano Ferraresi, and Eros Zanchetta. 2009. The WaCky wide web: A collection of very large linguistically processed web-crawled corpora. In Language Resources and Evaluation, pages 209-226.
    • (2009) Language Resources and Evaluation , pp. 209-226
    • Baroni, M.1    Bernardini, S.2    Ferraresi, A.3    Zanchetta, E.4
  • 4
    • 84870673011 scopus 로고    scopus 로고
    • A comparison of vector-based representations for semantic composition
    • William Blacoe and Mirella Lapata. 2012. A comparison of vector-based representations for semantic composition. In EMNLP.
    • (2012) EMNLP
    • Blacoe, W.1    Lapata, M.2
  • 5
    • 80053342456 scopus 로고    scopus 로고
    • Domain adaptation with structural correspondence learning
    • John Blitzer, Ryan McDonald, and Fernando Pereira. 2006. Domain adaptation with structural correspondence learning. In EMNLP.
    • (2006) EMNLP
    • Blitzer, J.1    McDonald, R.2    Pereira, F.3
  • 6
    • 84860524227 scopus 로고    scopus 로고
    • Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification
    • John Blitzer, Mark Dredze, and Fernando Pereira. 2007. Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. In ACL.
    • (2007) ACL
    • Blitzer, J.1    Dredze, M.2    Pereira, F.3
  • 7
    • 84943782437 scopus 로고    scopus 로고
    • Exploiting structure and semantics for expressive text kernels
    • Stephan Bloehdorn and Alessandro Moschitti. 2007. Exploiting Structure and Semantics for Expressive Text Kernels. In CIKM.
    • (2007) CIKM
    • Bloehdorn, S.1    Moschitti, A.2
  • 9
    • 80053262847 scopus 로고    scopus 로고
    • A shortest path dependency kernel for relation extraction
    • Razvan C. Bunescu and Raymond J. Mooney. 2005. A shortest path dependency kernel for relation extraction. In EMNLP.
    • (2005) EMNLP
    • Bunescu, R.C.1    Mooney, R.J.2
  • 11
    • 80053253822 scopus 로고    scopus 로고
    • Exploiting background knowledge for relation extraction
    • Yee Seng Chan and Dan Roth. 2010. Exploiting background knowledge for relation extraction. In COLING.
    • (2011) COLING
    • Seng Chan, Y.1    Roth, D.2
  • 15
    • 84858434398 scopus 로고    scopus 로고
    • A systematic exploration of the feature space for relation extraction
    • Jing Jiang and ChengXiang Zhai. 2007a. A systematic exploration of the feature space for relation extraction. In NAACL-HLT.
    • (2007) NAACL-HLT
    • Jiang, J.1    Xiang Zhai, C.2
  • 16
    • 84860538689 scopus 로고    scopus 로고
    • Instance weighting for domain adaptation in nlp
    • Jing Jiang and ChengXiang Zhai. 2007b. Instance weighting for domain adaptation in nlp. In ACL.
    • (2007) ACL
    • Jiang, J.1    Xiang Zhai, C.2
  • 17
    • 85140744814 scopus 로고    scopus 로고
    • Combining lexical, syntactic, and semantic features with maximum entropy models for information extraction
    • Nanda Kambhatla. 2004. Combining lexical, syntactic, and semantic features with maximum entropy models for information extraction. In ACL.
    • (2004) ACL
    • Kambhatla, N.1
  • 18
    • 84943800644 scopus 로고    scopus 로고
    • Semi-supervised abstractionaugmented string kernel for multi-level bio-relation extraction
    • Pavel Kuksa, Yanjun Qi, Bing Bai, Ronan Collobert, Jason Weston, Vladimir Pavlovic, and Xia Ning. 2010. Semi-supervised abstractionaugmented string kernel for multi-level bio-relation extraction. In ECML PKDD.
    • (2011) ECML PKDD
    • Kuksa, P.1    Qi, Y.2    Bai, B.3    Collobert, R.4    Weston, J.5    Pavlovic, V.6    Ning, X.7
  • 19
    • 73249116200 scopus 로고    scopus 로고
    • A scalable hierarchical distributed language model
    • Andriy Mnih and Geoffrey Hinton. 2008. A scalable hierarchical distributed language model. In NIPS.
    • (2008) NIPS
    • Mnih, A.1    Hinton, G.2
  • 20
    • 34547975798 scopus 로고    scopus 로고
    • Efficient convolution kernels for dependency and constituent syntactic trees
    • Alessandro Moschitti. 2006. Efficient convolution kernels for dependency and constituent syntactic trees. In ECML.
    • (2006) ECML
    • Moschitti, A.1
  • 21
    • 70349257998 scopus 로고    scopus 로고
    • Kernel methods, syntax and semantics for relational text categorization
    • Alessandro Moschitti. 2008. Kernel methods, syntax and semantics for relational text categorization. In CIKM.
    • (2008) CIKM
    • Moschitti, A.1
  • 22
    • 84906930736 scopus 로고    scopus 로고
    • Employing word representations and regularization for domain adaptation of relation extraction
    • Thien Huu Nguyen and Ralph Grishman. 2014. Employing word representations and regularization for domain adaptation of relation extraction. In ACL.
    • (2014) ACL
    • Huu Nguyen, T.1    Grishman, R.2
  • 24
    • 80053401742 scopus 로고    scopus 로고
    • Convolution kernels on constituent, dependency and sequential structures for relation extraction
    • T. Truc-Vien Nguyen, Alessandro Moschitti, and Giuseppe Riccardi. 2009. Convolution kernels on constituent, dependency and sequential structures for relation extraction. In EMNLP.
    • (2009) EMNLP
    • Truc-Vien Nguyen, T.1    Moschitti, A.2    Riccardi, G.3
  • 25
    • 84943794192 scopus 로고    scopus 로고
    • Robust domain adaptation for relation extraction via clustering consistency
    • Luan Minh Nguyen, W. Ivor Tsang, A. Kian Ming Chai, and Leong Hai Chieu. 2014. Robust domain adaptation for relation extraction via clustering consistency. In ACL.
    • (2014) ACL
    • Minh Nguyen, L.1    Ivor Tsang, W.2    Kian Ming Chai, A.3    Hai Chieu, L.4
  • 26
    • 84906926847 scopus 로고    scopus 로고
    • A practical and linguistically-motivated approach to compositional distributional semantics
    • Denis Paperno, The Nghia Pham, and Marco Baroni. 2014. A practical and linguistically-motivated approach to compositional distributional semantics. In ACL.
    • (2014) ACL
    • Paperno, D.1    Nghia Pham, T.2    Baroni, M.3
  • 27
    • 50849104254 scopus 로고    scopus 로고
    • Empiricism is not a matter of faith
    • Ted Pedersen. 2008. Empiricism is not a matter of faith. In Computational Linguistics 3, pages 465-470.
    • (2008) Computational Linguistics , vol.3 , pp. 465-470
    • Pedersen, T.1
  • 29
    • 84907345507 scopus 로고    scopus 로고
    • Embedding semantic similarity in tree kernels for domain adaptation of relation extraction
    • Barbara Plank and Alessandro Moschitti. 2013. Embedding semantic similarity in tree kernels for domain adaptation of relation extraction. In ACL.
    • (2013) ACL
    • Plank, B.1    Moschitti, A.2
  • 30
    • 75149168148 scopus 로고    scopus 로고
    • Exploiting constituent dependencies for tree kernel-based semantic relation extraction
    • Longhua Qian, Guodong Zhou, Fang Kong, Qiaoming Zhu, and Peide Qian. 2008. Exploiting constituent dependencies for tree kernel-based semantic relation extraction. In COLING.
    • (2008) COLING
    • Qian, L.1    Zhou, G.2    Kong, F.3    Zhu, Q.4    Qian, P.5
  • 31
  • 32
    • 84870715081 scopus 로고    scopus 로고
    • Semantic compositionality through recursive matrix-vector spaces
    • Richard Socher, Brody Huval, Christopher D. Manning, and Andrew Y. Ng. 2012b. Semantic compositionality through recursive matrix-vector spaces. In EMNLP.
    • (2012) EMNLP
    • Socher, R.1    Huval, B.2    Manning, C.D.3    Ng, A.Y.4
  • 33
    • 84981693201 scopus 로고    scopus 로고
    • Using active learning and semantic clustering for noise reduction in distant supervision
    • Lucas Sterckx, Thomas Demeester, Johannes Deleu, and Chris Develder. 2014. Using active learning and semantic clustering for noise reduction in distant supervision. In AKBC.
    • (2014) AKBC
    • Sterckx, L.1    Demeester, T.2    Deleu, J.3    Develder, C.4
  • 34
    • 84859074855 scopus 로고    scopus 로고
    • Semi-supervised relation extraction with large-scale word clustering
    • Ang Sun, Ralph Grishman, and Satoshi Sekine. 2011. Semi-supervised relation extraction with large-scale word clustering. In ACL.
    • (2011) ACL
    • Sun, A.1    Grishman, R.2    Sekine, S.3
  • 35
    • 80053495924 scopus 로고    scopus 로고
    • Word representations: A simple and general method for semi-supervised learning
    • Joseph Turian, Lev-Arie Ratinov, and Yoshua Bengio. 2010. Word representations: A simple and general method for semi-supervised learning. In ACL.
    • (2011) ACL
    • Turian, J.1    Ratinov, L.2    Bengio, Y.3
  • 36
    • 84862284174 scopus 로고    scopus 로고
    • A re-examination of dependency path kernels for relation extraction
    • Mengqiu Wang. 2008. A re-examination of dependency path kernels for relation extraction. In IJCNLP.
    • (2008) IJCNLP
    • Wang, M.1
  • 38
    • 84897513800 scopus 로고    scopus 로고
    • Domain adaptation for sequence labeling tasks with a probabilistic language adaptation model
    • Min Xiao and Yuhong Guo. 2013. Domain adaptation for sequence labeling tasks with a probabilistic language adaptation model. In ICML.
    • (2013) ICML
    • Xiao, M.1    Guo, Y.2
  • 40
    • 84960113164 scopus 로고    scopus 로고
    • Combining word embeddings and feature embeddings for fine-grained relation extraction
    • Mo Yu, Matthew Gormley, and Mark Dredze. 2015. Combining word embeddings and feature embeddings for fine-grained relation extraction. In NAACL.
    • (2015) NAACL
    • Yu, M.1    Gormley, M.2    Dredze, M.3
  • 42
    • 84959862537 scopus 로고    scopus 로고
    • Relation classification via convolutional deep neural network
    • Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, and Jun Zhao. 2014. Relation classification via convolutional deep neural network. In COLING.
    • (2014) COLING
    • Zeng, D.1    Liu, K.2    Lai, S.3    Zhou, G.4    Zhao, J.5
  • 43
    • 84860532294 scopus 로고    scopus 로고
    • A composite kernel to extract relations between entities with both flat and structured features
    • Min Zhang, Jie Zhang, Jian Su, and Guodong Zhou. 2006. A composite kernel to extract relations between entities with both flat and structured features. In COLING-ACL.
    • (2006) COLING-ACL
    • Zhang, M.1    Zhang, J.2    Su, J.3    Zhou, G.4
  • 44
    • 84859917836 scopus 로고    scopus 로고
    • Extracting relations with integrated information using kernel methods
    • Shubin Zhao and Ralph Grishman. 2005. Extracting relations with integrated information using kernel methods. In ACL.
    • (2005) ACL
    • Zhao, S.1    Grishman, R.2
  • 45
    • 84859889184 scopus 로고    scopus 로고
    • Exploring various knowledge in relation extraction
    • GuoDong Zhou, Jian Su, Jie Zhang, and Min Zhang. 2005. Exploring various knowledge in relation extraction. In ACL.
    • (2005) ACL
    • Zhou, G.1    Su, J.2    Zhang, J.3    Zhang, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.