-
1
-
-
85187551068
-
The stages of event extraction
-
David Ahn. 2006. The stages of event extraction. In Proceedings of ACL, pages 1-8.
-
(2006)
Proceedings of ACL
, pp. 1-8
-
-
Ahn, D.1
-
2
-
-
84906930943
-
Dont count, predict! a systematic comparison of context-counting vs context-predicting semantic vectors
-
Marco Baroni, Georgiana Dinu, and Germán Kruszewski. 2014. Dont count, predict! a systematic comparison of context-counting vs. context-predicting semantic vectors. In Proceedings of ACL, pages 238-247.
-
(2014)
Proceedings of ACL
, pp. 238-247
-
-
Baroni, M.1
Dinu, G.2
Kruszewski, G.3
-
3
-
-
0142166851
-
A neural probabilistic language model
-
Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. 2003. A neural probabilistic language model. The Journal of Machine Learning Research, 3:1137-1155.
-
(2003)
The Journal of Machine Learning Research
, vol.3
, pp. 1137-1155
-
-
Bengio, Y.1
Ducharme, R.2
Vincent, P.3
Jauvin, C.4
-
4
-
-
84876800190
-
Joint modeling for chinese event extraction with rich linguistic features
-
Chen Chen and V Incent NG. 2012. Joint modeling for chinese event extraction with rich linguistic features. In Proceedings of COLING, pages 529-544.
-
(2012)
Proceedings of COLING
, pp. 529-544
-
-
Chen, C.1
Incent, N.G.V.2
-
5
-
-
80053558787
-
Natural language processing (almost) from scratch
-
Ronan Collobert, Jason Weston, Ĺeon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011. Natural language processing (almost) from scratch. The Journal of Machine Learning Research, 12:2493-2537.
-
(2011)
The Journal of Machine Learning Research
, vol.12
, pp. 2493-2537
-
-
Collobert, R.1
Weston, J.2
Bottou, Ĺ.3
Karlen, M.4
Kavukcuoglu, K.5
Kuksa, P.6
-
6
-
-
77949522811
-
Why does unsupervised pre-Training help deep learning?
-
Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent, and Samy Bengio. 2010. Why does unsupervised pre-Training help deep learning? The Journal of Machine Learning Research, 11:625-660.
-
(2011)
The Journal of Machine Learning Research
, vol.11
, pp. 625-660
-
-
Erhan, D.1
Bengio, Y.2
Courville, A.3
Manzagol, P.4
Vincent, P.5
Bengio, S.6
-
7
-
-
77956584723
-
Predicting unknown time arguments based on cross-event propagation
-
Prashant Gupta and Heng Ji. 2009. Predicting unknown time arguments based on cross-event propagation. In Proceedings of ACL-IJCNLP, pages 369-372.
-
(2009)
Proceedings of ACL-IJCNLP
, pp. 369-372
-
-
Gupta, P.1
Ji, H.2
-
9
-
-
84859055597
-
Using cross-entity inference to improve event extraction
-
Yu Hong, Jianfeng Zhang, Bin Ma, Jianmin Yao, Guodong Zhou, and Qiaoming Zhu. 2011. Using cross-entity inference to improve event extraction. In Proceedings of ACL-HLT, pages 1127-1136.
-
(2011)
Proceedings of ACL-HLT
, pp. 1127-1136
-
-
Hong, Y.1
Zhang, J.2
Ma, B.3
Yao, J.4
Zhou, G.5
Zhu, Q.6
-
10
-
-
84859903043
-
Refining event extraction through cross-document inference
-
Heng Ji and Ralph Grishman. 2008. Refining event extraction through cross-document inference. In Proceedings of ACL, pages 254-262.
-
(2008)
Proceedings of ACL
, pp. 254-262
-
-
Ji, H.1
Grishman, R.2
-
14
-
-
84959872385
-
Recurrent convolutional neural networks for text classification
-
Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015. Recurrent convolutional neural networks for text classification. In Proceedings of AAAI.
-
(2015)
Proceedings of AAAI
-
-
Lai, S.1
Xu, L.2
Liu, K.3
Zhao, J.4
-
15
-
-
84894653924
-
Joint event extraction via structured prediction with global features
-
Qi Li, Heng Ji, and Liang Huang. 2013. Joint event extraction via structured prediction with global features. In Proceedings of ACL, pages 73-82.
-
(2013)
Proceedings of ACL
, pp. 73-82
-
-
Li, Q.1
Ji, H.2
Huang, L.3
-
16
-
-
84961290471
-
Constructing information networks using one single model
-
Qi Li, Heng Ji, Yu Hong, and Sujian Li. 2014. Constructing information networks using one single model. In Proceedings of EMNLP, pages 1846-1851.
-
(2014)
Proceedings of EMNLP
, pp. 1846-1851
-
-
Li, Q.1
Ji, H.2
Hong, Y.3
Li, S.4
-
17
-
-
84859985050
-
Using document level cross-event inference to improve event extraction
-
Shasha Liao and Ralph Grishman. 2010. Using document level cross-event inference to improve event extraction. In Proceedings of ACL, pages 789-797.
-
(2011)
Proceedings of ACL
, pp. 789-797
-
-
Liao, S.1
Grishman, R.2
-
20
-
-
84898956512
-
Distributed representations of words and phrases and their compositionality
-
Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013b. Distributed representations of words and phrases and their compositionality. In Proceedings of NIPS, pages 3111-3119.
-
(2013)
Proceedings of NIPS
, pp. 3111-3119
-
-
Mikolov, T.1
Sutskever, I.2
Chen, K.3
Corrado, G.S.4
Dean, J.5
-
21
-
-
34547997987
-
Hierarchical probabilistic neural network language model
-
Frederic Morin and Yoshua Bengio. 2005. Hierarchical probabilistic neural network language model. In Proceedings of AISTATS, pages 246-252.
-
(2005)
Proceedings of AISTATS
, pp. 246-252
-
-
Morin, F.1
Bengio, Y.2
-
22
-
-
80053495924
-
Word representations: A simple and general method for semi-supervised learning
-
Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010. Word representations: A simple and general method for semi-supervised learning. In Proceedings of ACL, pages 384-394.
-
(2011)
Proceedings of ACL
, pp. 384-394
-
-
Turian, J.1
Ratinov, L.2
Bengio, Y.3
-
23
-
-
85141919230
-
Unsupervised word sense disambiguation rivaling supervised methods
-
David Yarowsky. 1995. Unsupervised word sense disambiguation rivaling supervised methods. In Proceedings of ACL, pages 189-196.
-
(1995)
Proceedings of ACL
, pp. 189-196
-
-
Yarowsky, D.1
-
25
-
-
84959862537
-
Relation classification via convolutional deep neural network
-
Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, and Jun Zhao. 2014. Relation classification via convolutional deep neural network. In Proceedings of COLING, pages 2335-2344
-
(2014)
Proceedings of COLING
, pp. 2335-2344
-
-
Zeng, D.1
Liu, K.2
Lai, S.3
Zhou, G.4
Zhao, J.5
|