메뉴 건너뛰기




Volumn 1, Issue , 2015, Pages 167-176

Event extraction via dynamic multi-pooling convolutional neural networks

Author keywords

[No Author keywords available]

Indexed keywords

BACKPROPAGATION; COMPUTATIONAL LINGUISTICS; CONVOLUTION; EXTRACTION; INFORMATION ANALYSIS; MULTILAYER NEURAL NETWORKS; SEMANTICS;

EID: 84943802037     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.3115/v1/p15-1017     Document Type: Conference Paper
Times cited : (1035)

References (25)
  • 1
    • 85187551068 scopus 로고    scopus 로고
    • The stages of event extraction
    • David Ahn. 2006. The stages of event extraction. In Proceedings of ACL, pages 1-8.
    • (2006) Proceedings of ACL , pp. 1-8
    • Ahn, D.1
  • 2
    • 84906930943 scopus 로고    scopus 로고
    • Dont count, predict! a systematic comparison of context-counting vs context-predicting semantic vectors
    • Marco Baroni, Georgiana Dinu, and Germán Kruszewski. 2014. Dont count, predict! a systematic comparison of context-counting vs. context-predicting semantic vectors. In Proceedings of ACL, pages 238-247.
    • (2014) Proceedings of ACL , pp. 238-247
    • Baroni, M.1    Dinu, G.2    Kruszewski, G.3
  • 4
    • 84876800190 scopus 로고    scopus 로고
    • Joint modeling for chinese event extraction with rich linguistic features
    • Chen Chen and V Incent NG. 2012. Joint modeling for chinese event extraction with rich linguistic features. In Proceedings of COLING, pages 529-544.
    • (2012) Proceedings of COLING , pp. 529-544
    • Chen, C.1    Incent, N.G.V.2
  • 7
    • 77956584723 scopus 로고    scopus 로고
    • Predicting unknown time arguments based on cross-event propagation
    • Prashant Gupta and Heng Ji. 2009. Predicting unknown time arguments based on cross-event propagation. In Proceedings of ACL-IJCNLP, pages 369-372.
    • (2009) Proceedings of ACL-IJCNLP , pp. 369-372
    • Gupta, P.1    Ji, H.2
  • 9
    • 84859055597 scopus 로고    scopus 로고
    • Using cross-entity inference to improve event extraction
    • Yu Hong, Jianfeng Zhang, Bin Ma, Jianmin Yao, Guodong Zhou, and Qiaoming Zhu. 2011. Using cross-entity inference to improve event extraction. In Proceedings of ACL-HLT, pages 1127-1136.
    • (2011) Proceedings of ACL-HLT , pp. 1127-1136
    • Hong, Y.1    Zhang, J.2    Ma, B.3    Yao, J.4    Zhou, G.5    Zhu, Q.6
  • 10
    • 84859903043 scopus 로고    scopus 로고
    • Refining event extraction through cross-document inference
    • Heng Ji and Ralph Grishman. 2008. Refining event extraction through cross-document inference. In Proceedings of ACL, pages 254-262.
    • (2008) Proceedings of ACL , pp. 254-262
    • Ji, H.1    Grishman, R.2
  • 14
    • 84959872385 scopus 로고    scopus 로고
    • Recurrent convolutional neural networks for text classification
    • Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015. Recurrent convolutional neural networks for text classification. In Proceedings of AAAI.
    • (2015) Proceedings of AAAI
    • Lai, S.1    Xu, L.2    Liu, K.3    Zhao, J.4
  • 15
    • 84894653924 scopus 로고    scopus 로고
    • Joint event extraction via structured prediction with global features
    • Qi Li, Heng Ji, and Liang Huang. 2013. Joint event extraction via structured prediction with global features. In Proceedings of ACL, pages 73-82.
    • (2013) Proceedings of ACL , pp. 73-82
    • Li, Q.1    Ji, H.2    Huang, L.3
  • 16
    • 84961290471 scopus 로고    scopus 로고
    • Constructing information networks using one single model
    • Qi Li, Heng Ji, Yu Hong, and Sujian Li. 2014. Constructing information networks using one single model. In Proceedings of EMNLP, pages 1846-1851.
    • (2014) Proceedings of EMNLP , pp. 1846-1851
    • Li, Q.1    Ji, H.2    Hong, Y.3    Li, S.4
  • 17
    • 84859985050 scopus 로고    scopus 로고
    • Using document level cross-event inference to improve event extraction
    • Shasha Liao and Ralph Grishman. 2010. Using document level cross-event inference to improve event extraction. In Proceedings of ACL, pages 789-797.
    • (2011) Proceedings of ACL , pp. 789-797
    • Liao, S.1    Grishman, R.2
  • 20
    • 84898956512 scopus 로고    scopus 로고
    • Distributed representations of words and phrases and their compositionality
    • Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013b. Distributed representations of words and phrases and their compositionality. In Proceedings of NIPS, pages 3111-3119.
    • (2013) Proceedings of NIPS , pp. 3111-3119
    • Mikolov, T.1    Sutskever, I.2    Chen, K.3    Corrado, G.S.4    Dean, J.5
  • 21
    • 34547997987 scopus 로고    scopus 로고
    • Hierarchical probabilistic neural network language model
    • Frederic Morin and Yoshua Bengio. 2005. Hierarchical probabilistic neural network language model. In Proceedings of AISTATS, pages 246-252.
    • (2005) Proceedings of AISTATS , pp. 246-252
    • Morin, F.1    Bengio, Y.2
  • 22
    • 80053495924 scopus 로고    scopus 로고
    • Word representations: A simple and general method for semi-supervised learning
    • Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010. Word representations: A simple and general method for semi-supervised learning. In Proceedings of ACL, pages 384-394.
    • (2011) Proceedings of ACL , pp. 384-394
    • Turian, J.1    Ratinov, L.2    Bengio, Y.3
  • 23
    • 85141919230 scopus 로고
    • Unsupervised word sense disambiguation rivaling supervised methods
    • David Yarowsky. 1995. Unsupervised word sense disambiguation rivaling supervised methods. In Proceedings of ACL, pages 189-196.
    • (1995) Proceedings of ACL , pp. 189-196
    • Yarowsky, D.1
  • 25
    • 84959862537 scopus 로고    scopus 로고
    • Relation classification via convolutional deep neural network
    • Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, and Jun Zhao. 2014. Relation classification via convolutional deep neural network. In Proceedings of COLING, pages 2335-2344
    • (2014) Proceedings of COLING , pp. 2335-2344
    • Zeng, D.1    Liu, K.2    Lai, S.3    Zhou, G.4    Zhao, J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.