메뉴 건너뛰기




Volumn , Issue , 2016, Pages 300-309

Joint event extraction via recurrent neural networks

Author keywords

[No Author keywords available]

Indexed keywords

BACKPROPAGATION; COMPUTATIONAL LINGUISTICS; INFORMATION ANALYSIS; PIPELINES;

EID: 84994131482     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.18653/v1/n16-1034     Document Type: Conference Paper
Times cited : (778)

References (34)
  • 2
    • 84906930943 scopus 로고    scopus 로고
    • Don't count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors
    • Marco Baroni, Georgiana Dinu, and Germán Kruszewski. 2014. Don't count, predict! a systematic comparison of context-counting vs. context-predicting semantic vectors. In ACL.
    • (2014) ACL
    • Baroni, M.1    Dinu, G.2    Kruszewski, G.3
  • 5
    • 84943802037 scopus 로고    scopus 로고
    • Event extraction via dynamic multi-pooling convolutional neural networks
    • Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and Jun Zhao. 2015. Event extraction via dynamic multi-pooling convolutional neural networks. In ACL-IJCNLP.
    • (2015) ACL-IJCNLP
    • Chen, Y.1    Xu, L.2    Liu, K.3    Zeng, D.4    Zhao, J.5
  • 6
    • 84961291190 scopus 로고    scopus 로고
    • Learning phrase representations using rnn encoder-decoder for statistical machine translation
    • Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase representations using rnn encoder-decoder for statistical machine translation. In EMNLP.
    • (2014) EMNLP
    • Cho, K.1    Van Merrienboer, B.2    Gulcehre, C.3    Bahdanau, D.4    Bougares, F.5    Schwenk, H.6    Bengio, Y.7
  • 8
    • 56449095373 scopus 로고    scopus 로고
    • A unified architecture for natural language processing: Deep neural networks with multitask learning
    • Ronan Collobert and Jason Weston. 2008. A unified architecture for natural language processing: deep neural networks with multitask learning. In ICML.
    • (2008) ICML
    • Collobert, R.1    Weston, J.2
  • 11
    • 77956584723 scopus 로고    scopus 로고
    • Predicting unknown time arguments based on cross-event propagation
    • Prashant Gupta and Heng Ji. 2009. Predicting unknown time arguments based on cross-event propagation. In ACL-IJCNLP.
    • (2009) ACL-IJCNLP
    • Gupta, P.1    Ji, H.2
  • 13
    • 84859055597 scopus 로고    scopus 로고
    • Using cross-entity inference to improve event extraction
    • Yu Hong, Jianfeng Zhang, Bin Ma, Jianmin Yao, Guodong Zhou, and Qiaoming Zhu. 2011. Using cross-entity inference to improve event extraction. In ACL.
    • (2011) ACL
    • Hong, Y.1    Zhang, J.2    Ma, B.3    Yao, J.4    Zhou, G.5    Zhu, Q.6
  • 14
    • 85167403109 scopus 로고    scopus 로고
    • Modeling textual cohesion for event extraction
    • Ruihong Huang and Ellen Riloff. 2012. Modeling textual cohesion for event extraction. In AAAI.
    • (2012) AAAI
    • Huang, R.1    Riloff, E.2
  • 15
    • 84859903043 scopus 로고    scopus 로고
    • Refining event extraction through cross-document inference
    • Heng Ji and Ralph Grishman. 2008. Refining event extraction through cross-document inference. In ACL.
    • (2008) ACL
    • Ji, H.1    Grishman, R.2
  • 16
    • 84969972527 scopus 로고    scopus 로고
    • An empirical exploration of recurrent network architectures
    • Rafal Józefowicz, Wojciech Zaremba, and Ilya Sutskever. 2015. An empirical exploration of recurrent network architectures. In ICML.
    • (2015) ICML
    • Józefowicz, R.1    Zaremba, W.2    Sutskever, I.3
  • 17
    • 84961376850 scopus 로고    scopus 로고
    • Convolutional neural networks for sentence classification
    • Yoon Kim. 2014. Convolutional neural networks for sentence classification. In EMNLP.
    • (2014) EMNLP
    • Kim, Y.1
  • 18
    • 84894653924 scopus 로고    scopus 로고
    • Joint event extraction via structured prediction with global features
    • Qi Li, Heng Ji, and Liang Huang. 2013. Joint event extraction via structured prediction with global features. In ACL.
    • (2013) ACL
    • Li, Q.1    Ji, H.2    Huang, L.3
  • 19
    • 84961290471 scopus 로고    scopus 로고
    • Constructing information networks using one single model
    • Qi Li, Heng Ji, Yu Hong, and Sujian Li. 2014b. Constructing information networks using one single model. In EMNLP.
    • (2014) EMNLP
    • Li, Q.1    Ji, H.2    Hong, Y.3    Li, S.4
  • 20
    • 84859985050 scopus 로고    scopus 로고
    • Using document level cross-event inference to improve event extraction
    • Shasha Liao and Ralph Grishman. 2010. Using document level cross-event inference to improve event extraction. In ACL.
    • (2010) ACL
    • Liao, S.1    Grishman, R.2
  • 21
    • 84866876887 scopus 로고    scopus 로고
    • Acquiring topic features to improve event extraction: In pre-selected and balanced collections
    • Shasha Liao and Ralph Grishman. 2011. Acquiring topic features to improve event extraction: in pre-selected and balanced collections. In RANLP.
    • (2011) RANLP
    • Liao, S.1    Grishman, R.2
  • 23
    • 85083951332 scopus 로고    scopus 로고
    • Efficient estimation of word representations in vector space
    • Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013a. Efficient estimation of word representations in vector space. In ICLR.
    • (2013) ICLR
    • Mikolov, T.1    Chen, K.2    Corrado, G.3    Dean, J.4
  • 24
    • 84898956512 scopus 로고    scopus 로고
    • Distributed representations of words and phrases and their compositionality
    • Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013b. Distributed representations of words and phrases and their compositionality. In NIPS.
    • (2013) NIPS
    • Mikolov, T.1    Sutskever, I.2    Chen, K.3    Corrado, G.4    Dean, J.5
  • 26
    • 84944030435 scopus 로고    scopus 로고
    • Event detection and domain adaptation with convolutional neural networks
    • Thien Huu Nguyen and Ralph Grishman. 2015b. Event detection and domain adaptation with convolutional neural networks. In ACL-IJCNLP.
    • (2015) ACL-IJCNLP
    • Nguyen, T.H.1    Grishman, R.2
  • 27
    • 80053430767 scopus 로고    scopus 로고
    • A unified model of phrasal and sentential evidence for information extraction
    • Siddharth Patwardhan and Ellen Riloff. 2009. A unified model of phrasal and sentential evidence for information extraction. In EMNLP.
    • (2009) EMNLP
    • Patwardhan, S.1    Riloff, E.2
  • 28
    • 83055180631 scopus 로고    scopus 로고
    • Joint inference for knowledge extraction from biomedical literature
    • Hoifung Poon and Lucy Vanderwende. 2010. Joint inference for knowledge extraction from biomedical literature. In NAACL-HLT.
    • (2010) NAACL-HLT
    • Poon, H.1    Vanderwende, L.2
  • 29
    • 80053284695 scopus 로고    scopus 로고
    • Fast and robust joint models for biomedical event extraction
    • Sebastian Riedel and Andrew McCallum. 2011a. Fast and robust joint models for biomedical event extraction. In EMNLP.
    • (2011) EMNLP
    • Riedel, S.1    McCallum, A.2
  • 30
    • 84888276650 scopus 로고    scopus 로고
    • Robust biomedical event extraction with dual decomposition and minimal domain adaptation
    • Sebastian Riedel and Andrew McCallum. 2011b. Robust biomedical event extraction with dual decomposition and minimal domain adaptation. In BioNLP Shared Task 2011 Workshop.
    • (2011) BioNLP Shared Task 2011 Workshop
    • Riedel, S.1    McCallum, A.2
  • 32
    • 80053495924 scopus 로고    scopus 로고
    • Word representations: A simple and general method for semi-supervised learning
    • Joseph Turian, Lev-Arie Ratinov, and Yoshua Bengio. 2010. Word representations: A simple and general method for semi-supervised learning. In ACL.
    • (2010) ACL
    • Turian, J.1    Ratinov, L.-A.2    Bengio, Y.3
  • 33
    • 84961302979 scopus 로고    scopus 로고
    • Relieving the computational bottleneck: Joint inference for event extraction with high-dimensional features
    • Deepak Venugopal, Chen Chen, Vibhav Gogate, and Vincent Ng. 2014. Relieving the computational bottleneck: Joint inference for event extraction with high-dimensional features. In EMNLP.
    • (2014) EMNLP
    • Venugopal, D.1    Chen, C.2    Gogate, V.3    Ng, V.4
  • 34
    • 84905272120 scopus 로고    scopus 로고
    • Adadelta: An adaptive learning rate method
    • abs/1212.5701
    • Matthew D. Zeiler. 2012. Adadelta: An adaptive learning rate method. In CoRR, abs/1212.5701.
    • (2012) CoRR
    • Zeiler, M.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.