-
1
-
-
84958264664
-
-
arXiv preprint
-
Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.
-
(2016)
Tensorflow: Large-Scale Machine Learning on Heterogeneous Distributed Systems
-
-
Abadi, M.1
Agarwal, A.2
Barham, P.3
Brevdo, E.4
Chen, Z.5
Citro, C.6
Corrado, G.S.7
Davis, A.8
Dean, J.9
Devin, M.10
-
2
-
-
38149077590
-
The IM algorithm: A variational approach to information maximization
-
David Barber Felix Agakov. The IM algorithm: a variational approach to information maximization. In NIPS, volume 16, 2004.
-
(2004)
NIPS
, vol.16
-
-
Agakov, D.B.F.1
-
4
-
-
84959186433
-
Towards open world recognition
-
Abhijit Bendale and Terrance Boult. Towards open world recognition. In CVPR, 2015.
-
(2015)
CVPR
-
-
Bendale, A.1
Boult, T.2
-
5
-
-
0035514587
-
Predictability, complexity, and learning
-
William Bialek, Ilya Nemenman, and Naftali Tishby. Predictability, complexity, and learning. Neural computation, 13(11):2409-2463, 2001.
-
(2001)
Neural Computation
, vol.13
, Issue.11
, pp. 2409-2463
-
-
Bialek, W.1
Nemenman, I.2
Tishby, N.3
-
7
-
-
84941101990
-
Multivariate sharp quadratic bounds via S-strong convexity and the fenchel connection
-
Ryan P. Browne and Paul D. McNicholas. Multivariate sharp quadratic bounds via S-strong convexity and the fenchel connection. Electronic Journal of Statistics, 9, 2015.
-
(2015)
Electronic Journal of Statistics
, vol.9
-
-
Browne, R.P.1
McNicholas, P.D.2
-
9
-
-
85019181639
-
Relevant sparse codes with variational information bottleneck
-
Matthew Chalk, Olivier Marre, and Gasper Tkacik. Relevant sparse codes with variational information bottleneck. In NIPS, 2016.
-
(2016)
NIPS
-
-
Chalk, M.1
Marre, O.2
Tkacik, G.3
-
10
-
-
22044458307
-
Information bottleneck for Gaussian variables
-
G. Chechik, A Globersonand N. Tishby, and Y. Weiss. Information bottleneck for gaussian variables. J. of Machine Learning Research, 6:165188, 2005.
-
(2005)
J. Of Machine Learning Research
, vol.6
, pp. 165188
-
-
Chechik, G.1
Globersonand, A.2
Tishby, N.3
Weiss, Y.4
-
12
-
-
72249100259
-
ImageNet: A large-scale hierarchical image database
-
Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pp. 248-255. IEEE, 2009.
-
(2009)
Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on
, pp. 248-255
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
13
-
-
85018922715
-
Robustness of classifiers: From adversarial to random noise
-
Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. Robustness of classifiers: from adversarial to random noise. In NIPS, 2016.
-
(2016)
NIPS
-
-
Fawzi, A.1
Moosavi-Dezfooli, S.-M.2
Frossard, P.3
-
14
-
-
84862277874
-
Understanding the difficulty of training deep feedforward neural networks
-
Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks. In AI/Statistics, volume 9, pp. 249-256, 2010.
-
(2010)
AI/Statistics
, vol.9
, pp. 249-256
-
-
Glorot, X.1
Bengio, Y.2
-
15
-
-
85083951001
-
Explaining and harnessing adversarial examples
-
Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In ICLR, 2015.
-
(2015)
ICLR
-
-
Goodfellow, I.J.1
Shlens, J.2
Szegedy, C.3
-
16
-
-
85087331890
-
Beta-VAE: Learning basic visual concepts with a constrained variational framework
-
Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-VAE: Learning basic visual concepts with a constrained variational framework. In ICLR, 2017. URL https://openreview.net/pdf?id=Sy2fzU9gl.
-
(2017)
ICLR
-
-
Higgins, I.1
Matthey, L.2
Pal, A.3
Burgess, C.4
Glorot, X.5
Botvinick, M.6
Mohamed, S.7
Lerchner, A.8
-
17
-
-
85016032110
-
-
CoRR, abs/1511.03034
-
Ruitong Huang, Bing Xu, Dale Schuurmans, and Csaba Szepesvári. Learning with a strong adversary. CoRR, abs/1511.03034, 2015.
-
(2015)
Learning with a Strong Adversary
-
-
Huang, R.1
Xu, B.2
Schuurmans, D.3
Szepesvári, C.4
-
18
-
-
85083951076
-
ADaM: A method for stochastic optimization
-
Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.
-
(2015)
ICLR
-
-
Kingma, D.1
Ba, J.2
-
19
-
-
85083952489
-
Auto-encoding variational Bayes
-
Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. In ICLR, 2014.
-
(2014)
ICLR
-
-
Kingma, D.P.1
Welling, M.2
-
20
-
-
85113180911
-
Adversarial examples in the physical world
-
Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world. In ICLR Workshop, 2017. URL https://openreview.net/pdf?id=S1OufnIlx.
-
(2017)
ICLR Workshop
-
-
Kurakin, A.1
Goodfellow, I.2
Bengio, S.3
-
21
-
-
85083951172
-
The variational fair autoencoder
-
Christos Louizos, Kevin Swersky, Yujia Li, Max Welling, and Richard Zemel. The variational fair autoencoder. In ICLR, 2016. URL http://arxiv.org/abs/1511.00830.
-
(2016)
ICLR
-
-
Louizos, C.1
Swersky, K.2
Li, Y.3
Welling, M.4
Zemel, R.5
-
23
-
-
84965128263
-
Variational information maximisation for intrinsically motivated reinforcement learning
-
Shakir Mohamed and Danilo Jimenez Rezende. Variational information maximisation for intrinsically motivated reinforcement learning. In NIPS, pp. 2125-2133, 2015.
-
(2015)
NIPS
, pp. 2125-2133
-
-
Mohamed, S.1
Rezende, D.J.2
-
25
-
-
84986325571
-
Deepfool: A simple and accurate method to fool deep neural networks
-
Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and accurate method to fool deep neural networks. In CVPR, 2016.
-
(2016)
CVPR
-
-
Moosavi-Dezfooli, S.-M.1
Fawzi, A.2
Frossard, P.3
-
26
-
-
84946206172
-
Deep neural networks are easily fooled: High confidence predictions for unrecognizable images
-
Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. In CVPR, 2015. URL http://arxiv.org/abs/1412.1897.
-
(2015)
CVPR
-
-
Nguyen, A.1
Yosinski, J.2
Clune, J.3
-
27
-
-
84930965484
-
Predictive information in a sensory population
-
Stephanie E Palmer, Olivier Marre, Michael J Berry, and William Bialek. Predictive information in a sensory population. PNAS, 112(22):6908-6913, 2015.
-
(2015)
PNAS
, vol.112
, Issue.22
, pp. 6908-6913
-
-
Palmer, S.E.1
Marre, O.2
Berry, M.J.3
Bialek, W.4
-
28
-
-
84978047763
-
The limitations of deep learning in adversarial settings
-
Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and Ananthram Swami. The limitations of deep learning in adversarial settings. In Proceedings of the 1st IEEE European Symposium on Security and Privacy, 2015.
-
(2015)
Proceedings of the 1st IEEE European Symposium on Security and Privacy
-
-
Papernot, N.1
McDaniel, P.2
Jha, S.3
Fredrikson, M.4
Berkay Celik, Z.5
Swami, A.6
-
29
-
-
85135124091
-
Regularizing neural networks by penalizing confident output predictions
-
Gabriel Pereyra, George Tuckery, Jan Chorowski, and Lukasz Kaiser. Regularizing neural networks by penalizing confident output predictions. In ICLR Workshop, 2017. URL https://openreview.net/pdf?id=HyhbYrGYe.
-
(2017)
ICLR Workshop
-
-
Pereyra, G.1
Tuckery, G.2
Chorowski, J.3
Kaiser, L.4
-
32
-
-
85083951731
-
Adversarial manipulation of deep representations
-
Sara Sabour, Yanshuai Cao, Fartash Faghri, and David J Fleet. Adversarial manipulation of deep representations. In ICLR, 2016.
-
(2016)
ICLR
-
-
Sabour, S.1
Cao, Y.2
Faghri, F.3
Fleet, D.J.4
-
33
-
-
29444444918
-
Information-based clustering
-
Noam Slonim, Gurinder Singh Atwal, Gašper Tkacik, and William Bialek. Information-based clustering. PNAS, 102(51):18297-18302, 2005.
-
(2005)
PNAS
, vol.102
, Issue.51
, pp. 18297-18302
-
-
Slonim, N.1
Atwal, G.S.2
Tkacik, G.3
Bialek, W.4
-
34
-
-
85083953343
-
Intriguing properties of neural networks
-
Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In ICLR, 2014. URL http://arxiv.org/abs/1312.6199.
-
(2014)
ICLR
-
-
Szegedy, C.1
Zaremba, W.2
Sutskever, I.3
Bruna, J.4
Erhan, D.5
Goodfellow, I.6
Fergus, R.7
-
35
-
-
84983383396
-
-
arXiv preprint
-
Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alex Alemi. Inception-v4, inception-resnet and the impact of residual connections on learning. arXiv preprint arXiv:1602.07261, 2016.
-
(2016)
Inception-V4, Inception-Resnet and the Impact of Residual Connections on Learning
-
-
Szegedy, C.1
Ioffe, S.2
Vanhoucke, V.3
Alemi, A.4
-
36
-
-
84938946187
-
Deep learning and the information bottleneck principle
-
April
-
N Tishby and N Zaslavsky. Deep learning and the information bottleneck principle. In IEEE Information Theory Workshop, pp. 1-5, April 2015a.
-
(2015)
IEEE Information Theory Workshop
, pp. 1-5
-
-
Tishby, N.1
Zaslavsky, N.2
-
37
-
-
0001808038
-
The information bottleneck method
-
N. Tishby, F.C. Pereira, and W. Biale. The information bottleneck method. In The 37th annual Allerton Conf. on Communication, Control, and Computing, pp. 368-377, 1999.
-
(1999)
The 37th Annual Allerton Conf. On Communication, Control, and Computing
, pp. 368-377
-
-
Tishby, N.1
Pereira, F.C.2
Biale, W.3
-
39
-
-
84983525883
-
On the relation between identifiability, differential privacy and Mutual-Information privacy
-
Weina Wang, Lei Ying, and Junshan Zhang. On the relation between identifiability, differential privacy and Mutual-Information privacy. IEEE Trans. Inf. Theory, 62:5018-5029, 2016a.
-
(2016)
IEEE Trans. Inf. Theory
, vol.62
, pp. 5018-5029
-
-
Wang, W.1
Ying, L.2
Zhang, J.3
|