메뉴 건너뛰기




Volumn , Issue , 2017, Pages

Deep variational information bottleneck

Author keywords

[No Author keywords available]

Indexed keywords

GENERALIZATION PERFORMANCE; INFORMATION BOTTLENECK; REPARAMETERIZATION; VARIATIONAL APPROACHES; VARIATIONAL APPROXIMATION;

EID: 85088228611     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (991)

References (40)
  • 2
    • 38149077590 scopus 로고    scopus 로고
    • The IM algorithm: A variational approach to information maximization
    • David Barber Felix Agakov. The IM algorithm: a variational approach to information maximization. In NIPS, volume 16, 2004.
    • (2004) NIPS , vol.16
    • Agakov, D.B.F.1
  • 4
    • 84959186433 scopus 로고    scopus 로고
    • Towards open world recognition
    • Abhijit Bendale and Terrance Boult. Towards open world recognition. In CVPR, 2015.
    • (2015) CVPR
    • Bendale, A.1    Boult, T.2
  • 5
    • 0035514587 scopus 로고    scopus 로고
    • Predictability, complexity, and learning
    • William Bialek, Ilya Nemenman, and Naftali Tishby. Predictability, complexity, and learning. Neural computation, 13(11):2409-2463, 2001.
    • (2001) Neural Computation , vol.13 , Issue.11 , pp. 2409-2463
    • Bialek, W.1    Nemenman, I.2    Tishby, N.3
  • 7
    • 84941101990 scopus 로고    scopus 로고
    • Multivariate sharp quadratic bounds via S-strong convexity and the fenchel connection
    • Ryan P. Browne and Paul D. McNicholas. Multivariate sharp quadratic bounds via S-strong convexity and the fenchel connection. Electronic Journal of Statistics, 9, 2015.
    • (2015) Electronic Journal of Statistics , vol.9
    • Browne, R.P.1    McNicholas, P.D.2
  • 9
    • 85019181639 scopus 로고    scopus 로고
    • Relevant sparse codes with variational information bottleneck
    • Matthew Chalk, Olivier Marre, and Gasper Tkacik. Relevant sparse codes with variational information bottleneck. In NIPS, 2016.
    • (2016) NIPS
    • Chalk, M.1    Marre, O.2    Tkacik, G.3
  • 13
    • 85018922715 scopus 로고    scopus 로고
    • Robustness of classifiers: From adversarial to random noise
    • Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. Robustness of classifiers: from adversarial to random noise. In NIPS, 2016.
    • (2016) NIPS
    • Fawzi, A.1    Moosavi-Dezfooli, S.-M.2    Frossard, P.3
  • 14
    • 84862277874 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks
    • Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks. In AI/Statistics, volume 9, pp. 249-256, 2010.
    • (2010) AI/Statistics , vol.9 , pp. 249-256
    • Glorot, X.1    Bengio, Y.2
  • 15
    • 85083951001 scopus 로고    scopus 로고
    • Explaining and harnessing adversarial examples
    • Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In ICLR, 2015.
    • (2015) ICLR
    • Goodfellow, I.J.1    Shlens, J.2    Szegedy, C.3
  • 16
    • 85087331890 scopus 로고    scopus 로고
    • Beta-VAE: Learning basic visual concepts with a constrained variational framework
    • Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-VAE: Learning basic visual concepts with a constrained variational framework. In ICLR, 2017. URL https://openreview.net/pdf?id=Sy2fzU9gl.
    • (2017) ICLR
    • Higgins, I.1    Matthey, L.2    Pal, A.3    Burgess, C.4    Glorot, X.5    Botvinick, M.6    Mohamed, S.7    Lerchner, A.8
  • 18
    • 85083951076 scopus 로고    scopus 로고
    • ADaM: A method for stochastic optimization
    • Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.
    • (2015) ICLR
    • Kingma, D.1    Ba, J.2
  • 19
    • 85083952489 scopus 로고    scopus 로고
    • Auto-encoding variational Bayes
    • Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. In ICLR, 2014.
    • (2014) ICLR
    • Kingma, D.P.1    Welling, M.2
  • 20
    • 85113180911 scopus 로고    scopus 로고
    • Adversarial examples in the physical world
    • Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world. In ICLR Workshop, 2017. URL https://openreview.net/pdf?id=S1OufnIlx.
    • (2017) ICLR Workshop
    • Kurakin, A.1    Goodfellow, I.2    Bengio, S.3
  • 21
    • 85083951172 scopus 로고    scopus 로고
    • The variational fair autoencoder
    • Christos Louizos, Kevin Swersky, Yujia Li, Max Welling, and Richard Zemel. The variational fair autoencoder. In ICLR, 2016. URL http://arxiv.org/abs/1511.00830.
    • (2016) ICLR
    • Louizos, C.1    Swersky, K.2    Li, Y.3    Welling, M.4    Zemel, R.5
  • 23
    • 84965128263 scopus 로고    scopus 로고
    • Variational information maximisation for intrinsically motivated reinforcement learning
    • Shakir Mohamed and Danilo Jimenez Rezende. Variational information maximisation for intrinsically motivated reinforcement learning. In NIPS, pp. 2125-2133, 2015.
    • (2015) NIPS , pp. 2125-2133
    • Mohamed, S.1    Rezende, D.J.2
  • 25
    • 84986325571 scopus 로고    scopus 로고
    • Deepfool: A simple and accurate method to fool deep neural networks
    • Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and accurate method to fool deep neural networks. In CVPR, 2016.
    • (2016) CVPR
    • Moosavi-Dezfooli, S.-M.1    Fawzi, A.2    Frossard, P.3
  • 26
    • 84946206172 scopus 로고    scopus 로고
    • Deep neural networks are easily fooled: High confidence predictions for unrecognizable images
    • Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. In CVPR, 2015. URL http://arxiv.org/abs/1412.1897.
    • (2015) CVPR
    • Nguyen, A.1    Yosinski, J.2    Clune, J.3
  • 27
    • 84930965484 scopus 로고    scopus 로고
    • Predictive information in a sensory population
    • Stephanie E Palmer, Olivier Marre, Michael J Berry, and William Bialek. Predictive information in a sensory population. PNAS, 112(22):6908-6913, 2015.
    • (2015) PNAS , vol.112 , Issue.22 , pp. 6908-6913
    • Palmer, S.E.1    Marre, O.2    Berry, M.J.3    Bialek, W.4
  • 29
    • 85135124091 scopus 로고    scopus 로고
    • Regularizing neural networks by penalizing confident output predictions
    • Gabriel Pereyra, George Tuckery, Jan Chorowski, and Lukasz Kaiser. Regularizing neural networks by penalizing confident output predictions. In ICLR Workshop, 2017. URL https://openreview.net/pdf?id=HyhbYrGYe.
    • (2017) ICLR Workshop
    • Pereyra, G.1    Tuckery, G.2    Chorowski, J.3    Kaiser, L.4
  • 32
    • 85083951731 scopus 로고    scopus 로고
    • Adversarial manipulation of deep representations
    • Sara Sabour, Yanshuai Cao, Fartash Faghri, and David J Fleet. Adversarial manipulation of deep representations. In ICLR, 2016.
    • (2016) ICLR
    • Sabour, S.1    Cao, Y.2    Faghri, F.3    Fleet, D.J.4
  • 33
    • 29444444918 scopus 로고    scopus 로고
    • Information-based clustering
    • Noam Slonim, Gurinder Singh Atwal, Gašper Tkacik, and William Bialek. Information-based clustering. PNAS, 102(51):18297-18302, 2005.
    • (2005) PNAS , vol.102 , Issue.51 , pp. 18297-18302
    • Slonim, N.1    Atwal, G.S.2    Tkacik, G.3    Bialek, W.4
  • 36
    • 84938946187 scopus 로고    scopus 로고
    • Deep learning and the information bottleneck principle
    • April
    • N Tishby and N Zaslavsky. Deep learning and the information bottleneck principle. In IEEE Information Theory Workshop, pp. 1-5, April 2015a.
    • (2015) IEEE Information Theory Workshop , pp. 1-5
    • Tishby, N.1    Zaslavsky, N.2
  • 39
    • 84983525883 scopus 로고    scopus 로고
    • On the relation between identifiability, differential privacy and Mutual-Information privacy
    • Weina Wang, Lei Ying, and Junshan Zhang. On the relation between identifiability, differential privacy and Mutual-Information privacy. IEEE Trans. Inf. Theory, 62:5018-5029, 2016a.
    • (2016) IEEE Trans. Inf. Theory , vol.62 , pp. 5018-5029
    • Wang, W.1    Ying, L.2    Zhang, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.