메뉴 건너뛰기




Volumn 2, Issue 1, 2016, Pages 87-101

Short-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet transforms and machine learning methods

Author keywords

Africa; Artificial neural networks; Autoregressive models; Drought forecasting; Standard precipitation index; Support vector regression; Wavelet analysis

Indexed keywords

AGRICULTURAL ROBOTS; DROUGHT; MACHINE LEARNING; RIVERS; SUPPORT VECTOR REGRESSION; WATERSHEDS; WAVELET ANALYSIS; WAVELET TRANSFORMS; WEATHER FORECASTING;

EID: 85088154740     PISSN: 23635037     EISSN: 23635045     Source Type: Journal    
DOI: 10.1007/s40899-015-0040-5     Document Type: Article
Times cited : (79)

References (76)
  • 1
    • 41949086697 scopus 로고    scopus 로고
    • Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis
    • Adamowski J (2008) Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis. J Hydrol 353:247–266 DOI: 10.1016/j.jhydrol.2008.02.013
    • (2008) J Hydrol , vol.353 , pp. 247-266
    • Adamowski, J.1
  • 2
    • 80052027629 scopus 로고    scopus 로고
    • A wavelet neural network conjunction model for groundwater level forecasting
    • Adamowski J, Chan HF (2011) A wavelet neural network conjunction model for groundwater level forecasting. J Hydrol 407:28–40 DOI: 10.1016/j.jhydrol.2011.06.013
    • (2011) J Hydrol , vol.407 , pp. 28-40
    • Adamowski, J.1    Chan, H.F.2
  • 3
    • 77955276087 scopus 로고    scopus 로고
    • Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds
    • Adamowski J, Sun K (2010) Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. J Hydrol 390:85–91 DOI: 10.1016/j.jhydrol.2010.06.033
    • (2010) J Hydrol , vol.390 , pp. 85-91
    • Adamowski, J.1    Sun, K.2
  • 4
    • 69249101676 scopus 로고    scopus 로고
    • Development of a new method of wavelet aided trend detection and estimation
    • Adamowski K, Prokoph A, Adamowski J (2009) Development of a new method of wavelet aided trend detection and estimation. Hydrol Process 23:2686–2696 DOI: 10.1002/hyp.7260
    • (2009) Hydrol Process , vol.23 , pp. 2686-2696
    • Adamowski, K.1    Prokoph, A.2    Adamowski, J.3
  • 5
    • 77349102024 scopus 로고    scopus 로고
    • Influence of trend on short duration design storms
    • Adamowski J, Adamowski K, Bougadis J (2010) Influence of trend on short duration design storms. Water Resour Manage 24:401–413 DOI: 10.1007/s11269-009-9452-z
    • (2010) Water Resour Manage , vol.24 , pp. 401-413
    • Adamowski, J.1    Adamowski, K.2    Bougadis, J.3
  • 6
    • 84865047835 scopus 로고    scopus 로고
    • Comparison of multivariate adaptive regression splines with coupled wavelet transform artificial neural networks for runoff forecasting in Himalayan micro-watersheds with limited data
    • Adamowski J, Chan H, Prasher S, Sharda VN (2012) Comparison of multivariate adaptive regression splines with coupled wavelet transform artificial neural networks for runoff forecasting in Himalayan micro-watersheds with limited data. J Hydroinform 3:731–744 DOI: 10.2166/hydro.2011.044
    • (2012) J Hydroinform , vol.3 , pp. 731-744
    • Adamowski, J.1    Chan, H.2    Prasher, S.3    Sharda, V.N.4
  • 7
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I. Preliminary concepts
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000a) Artificial neural networks in hydrology. I. Preliminary concepts. J Hydrol Eng 5(2):124–137
    • (2000) J Hydrol Eng , vol.5 , Issue.2 , pp. 124-137
  • 8
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000b) Artificial neural networks in hydrology. II. Hydrologic applications. Hydrol Eng 5(2):115–123
    • (2000) II. Hydrologic Applications. Hydrol Eng , vol.5 , Issue.2 , pp. 115-123
  • 9
    • 31044438334 scopus 로고    scopus 로고
    • Multi-time scale stream flow 505 predicitons: the support vector machines approach
    • Asefa T, Kemblowski M, McKee M, Khalil A (2006) Multi-time scale stream flow 505 predicitons: the support vector machines approach. J Hydrol 318(1–4):7–16 DOI: 10.1016/j.jhydrol.2005.06.001
    • (2006) J Hydrol , vol.318 , Issue.1-4 , pp. 7-16
    • Asefa, T.1    Kemblowski, M.2    McKee, M.3    Khalil, A.4
  • 10
    • 71149094442 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system for drought forecasting
    • Bacanli UG, Firat M, Dikbas F (2008) Adaptive neuro-fuzzy inference system for drought forecasting. Stoch Env Res Risk Assess 23(8):1143–1154 DOI: 10.1007/s00477-008-0288-5
    • (2008) Stoch Env Res Risk Assess , vol.23 , Issue.8 , pp. 1143-1154
    • Bacanli, U.G.1    Firat, M.2    Dikbas, F.3
  • 11
    • 47049097486 scopus 로고    scopus 로고
    • Toward long-lead operational forecasts of drought: an experimental study in the Murray-Darling River Basin
    • Barros A, Bowden G (2008) Toward long-lead operational forecasts of drought: an experimental study in the Murray-Darling River Basin. J Hydrol 357(3–4):349–367 DOI: 10.1016/j.jhydrol.2008.05.026
    • (2008) J Hydrol , vol.357 , Issue.3-4 , pp. 349-367
    • Barros, A.1    Bowden, G.2
  • 12
    • 84888875654 scopus 로고    scopus 로고
    • Standard Precipitation Index drought forecasting using neural networks, wavelet neural networks, and support vector regression
    • Belayneh A, Adamowski J (2012) Standard Precipitation Index drought forecasting using neural networks, wavelet neural networks, and support vector regression. Appl Comput Intell Soft Comput 2012:794061. doi:10.1155/2012/794061 DOI: 10.1155/2012/794061
    • (2012) Appl Comput Intell Soft Comput , vol.2012 , pp. 794061
    • Belayneh, A.1    Adamowski, J.2
  • 13
    • 84890235995 scopus 로고    scopus 로고
    • Long-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet-support vector regression models
    • Belayneh A, Adamowski J, Khalil B, Ozga-Zielinski B (2014) Long-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet-support vector regression models. J Hydrol 508:418–429 DOI: 10.1016/j.jhydrol.2013.10.052
    • (2014) J Hydrol , vol.508 , pp. 418-429
    • Belayneh, A.1    Adamowski, J.2    Khalil, B.3    Ozga-Zielinski, B.4
  • 16
    • 84925514047 scopus 로고    scopus 로고
    • Empowering marginalized communities in water resources management: addressing inequitable practices in participatory model building
    • Butler C, Adamowski J (2015) Empowering marginalized communities in water resources management: addressing inequitable practices in participatory model building. J Environ Manage 153:153–162 DOI: 10.1016/j.jenvman.2015.02.010
    • (2015) J Environ Manage , vol.153 , pp. 153-162
    • Butler, C.1    Adamowski, J.2
  • 17
    • 43449129204 scopus 로고    scopus 로고
    • Monitoring and forecasting drought on a regional scale: Emilia-Romagna region
    • Cacciamani C, Morgillo A, Marchesi S, Pavan V (2007) Monitoring and forecasting drought on a regional scale: Emilia-Romagna region. Water Sci Technol Libr 62(1):29–48 DOI: 10.1007/978-1-4020-5924-7_2
    • (2007) Water Sci Technol Libr , vol.62 , Issue.1 , pp. 29-48
    • Cacciamani, C.1    Morgillo, A.2    Marchesi, S.3    Pavan, V.4
  • 18
    • 84865528766 scopus 로고    scopus 로고
    • Forecasting urban water demand via wavelet- denoising and neural network models. Case study: city of Syracuse, Italy
    • Campisi S, Adamowski J, Oron G (2012) Forecasting urban water demand via wavelet- denoising and neural network models. Case study: city of Syracuse, Italy. Water Resour Manag 26:3539–3558 DOI: 10.1007/s11269-012-0089-y
    • (2012) Water Resour Manag , vol.26 , pp. 3539-3558
    • Campisi, S.1    Adamowski, J.2    Oron, G.3
  • 21
    • 45449119903 scopus 로고    scopus 로고
    • Estimation of daily suspended sediments using support vector machines
    • Cimen M (2008) Estimation of daily suspended sediments using support vector machines. Hydrol Sci J 53(3):656–666
    • (2008) Hydrol Sci J , vol.53 , Issue.3 , pp. 656-666
    • Cimen, M.1
  • 22
    • 0034621379 scopus 로고    scopus 로고
    • Daily reservoir inflowvforecasting using artificial neural networks with stopped trainingvapproach
    • Coulibaly P, Anctil F, Bobee B (2000) Daily reservoir inflowvforecasting using artificial neural networks with stopped trainingvapproach. J Hydrol 230:244–257 DOI: 10.1016/S0022-1694(00)00214-6
    • (2000) J Hydrol , vol.230 , pp. 244-257
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 23
    • 66249143052 scopus 로고    scopus 로고
    • Forecasting palmer index using neural networks and climatic indexes
    • Cutore P, Di Mauro G, Cancelliere A (2009) Forecasting palmer index using neural networks and climatic indexes. J Hydrol Eng 14:588–595 DOI: 10.1061/(ASCE)HE.1943-5584.0000028
    • (2009) J Hydrol Eng , vol.14 , pp. 588-595
    • Cutore, P.1    Di Mauro, G.2    Cancelliere, A.3
  • 24
    • 77952173973 scopus 로고    scopus 로고
    • Drought Analysis on the Awash River Basin, Ethiopia
    • Edossa DC, Babel MS, Gupta AD (2010) Drought Analysis on the Awash River Basin, Ethiopia. Water Resour Manag 24:1441–1460 DOI: 10.1007/s11269-009-9508-0
    • (2010) Water Resour Manag , vol.24 , pp. 1441-1460
    • Edossa, D.C.1    Babel, M.S.2    Gupta, A.D.3
  • 25
    • 0032910542 scopus 로고    scopus 로고
    • Accepting the standardized precipitation index: a calculation algorithm
    • Guttman NB (1999) Accepting the standardized precipitation index: a calculation algorithm. J Am Water Resour Assoc 35(2):311–322 DOI: 10.1111/j.1752-1688.1999.tb03592.x
    • (1999) J Am Water Resour Assoc , vol.35 , Issue.2 , pp. 311-322
    • Guttman, N.B.1
  • 26
    • 84876421157 scopus 로고    scopus 로고
    • Assessing the impacts of four land use types on the water quality of wetlands in Japan
    • Haidary A, Amiri BJ, Adamowski J, Fohrer N, Nakane K (2013) Assessing the impacts of four land use types on the water quality of wetlands in Japan. Water Resour Manage 27:2217–2229 DOI: 10.1007/s11269-013-0284-5
    • (2013) Water Resour Manage , vol.27 , pp. 2217-2229
    • Haidary, A.1    Amiri, B.J.2    Adamowski, J.3    Fohrer, N.4    Nakane, K.5
  • 27
    • 84878952050 scopus 로고    scopus 로고
    • Towards adaptive and integrated management paradigms to meet the challenges of water governance
    • Halbe J, Pahl-Wostl C, Sendzimir J, Adamowski J (2013) Towards adaptive and integrated management paradigms to meet the challenges of water governance. Water Sci Technol Water Supply 67:2651–2660 DOI: 10.2166/wst.2013.146
    • (2013) Water Sci Technol Water Supply , vol.67 , pp. 2651-2660
    • Halbe, J.1    Pahl-Wostl, C.2    Sendzimir, J.3    Adamowski, J.4
  • 30
    • 84922981699 scopus 로고    scopus 로고
    • Using causal loop diagrams for the initialization of stakeholder engagement in soil salinity management in agricultural watersheds in developing countries: a case study in the Rechna Doab watershed, Pakistan
    • Inam A, Adamowski J, Halbe J, Prasher S (2015) Using causal loop diagrams for the initialization of stakeholder engagement in soil salinity management in agricultural watersheds in developing countries: a case study in the Rechna Doab watershed, Pakistan. J Environ Manage 152:251–267 DOI: 10.1016/j.jenvman.2015.01.052
    • (2015) J Environ Manage , vol.152 , pp. 251-267
    • Inam, A.1    Adamowski, J.2    Halbe, J.3    Prasher, S.4
  • 31
    • 66249089151 scopus 로고    scopus 로고
    • Development of a hybrid index for drought prediction: case study
    • Karamouz M, Rasouli K, Nazil S (2009) Development of a hybrid index for drought prediction: case study. J Hydrol Eng 14:617–627 DOI: 10.1061/(ASCE)HE.1943-5584.0000022
    • (2009) J Hydrol Eng , vol.14 , pp. 617-627
    • Karamouz, M.1    Rasouli, K.2    Nazil, S.3
  • 32
    • 84859383917 scopus 로고    scopus 로고
    • The social experience of drought in rural Iran
    • Keshavarz M, Karami E, Vanclay F (2013) The social experience of drought in rural Iran. J Land Use Policy 30:120–129 DOI: 10.1016/j.landusepol.2012.03.003
    • (2013) J Land Use Policy , vol.30 , pp. 120-129
    • Keshavarz, M.1    Karami, E.2    Vanclay, F.3
  • 33
    • 33645864343 scopus 로고    scopus 로고
    • Application of support vector machine in lake water level prediction
    • Khan MS, Coulibaly P (2006) Application of support vector machine in lake water level prediction. J Hydrol Eng 11(3):199–205
    • (2006) J Hydrol Eng , vol.11 , Issue.3 , pp. 199-205
    • Khan, M.S.1    Coulibaly, P.2
  • 34
    • 0344121593 scopus 로고    scopus 로고
    • Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks
    • Kim T, Valdes JB (2003) Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks. J Hydrol Eng 8:319–328 DOI: 10.1061/(ASCE)1084-0699(2003)8:6(319)
    • (2003) J Hydrol Eng , vol.8 , pp. 319-328
    • Kim, T.1    Valdes, J.B.2
  • 35
    • 70349559015 scopus 로고    scopus 로고
    • Evapotranspiration modelling using support vector machines
    • Kisi O, Cimen M (2009) Evapotranspiration modelling using support vector machines. Hydrol Sci J 54(5):918–928
    • (2009) Hydrol Sci J , vol.54 , Issue.5 , pp. 918-928
    • Kisi, O.1    Cimen, M.2
  • 36
    • 79951579061 scopus 로고    scopus 로고
    • A wavelet-support vector machine conjunction model for monthly streamflow forecasting
    • Kisi O, Cimen M (2011) A wavelet-support vector machine conjunction model for monthly streamflow forecasting. J Hydrol 399:132–140 DOI: 10.1016/j.jhydrol.2010.12.041
    • (2011) J Hydrol , vol.399 , pp. 132-140
    • Kisi, O.1    Cimen, M.2
  • 37
    • 84908310502 scopus 로고    scopus 로고
    • Juggling multiple dimensions in a complex socioecosystem: the issue of targeting in payments for ecosystem services
    • Kolinjivadi V, Adamowski J, Kosoy N (2014a) Juggling multiple dimensions in a complex socioecosystem: the issue of targeting in payments for ecosystem services. Geoforum 58:1–13 DOI: 10.1016/j.geoforum.2014.10.004
    • (2014) Geoforum , vol.58 , pp. 1-13
    • Kolinjivadi, V.1    Adamowski, J.2    Kosoy, N.3
  • 38
    • 84916878559 scopus 로고    scopus 로고
    • Recasting payments for ecosystem services (PES) in water resource management: a novel institutional approach
    • Kolinjivadi V, Adamowski J, Kosoy N (2014b) Recasting payments for ecosystem services (PES) in water resource management: a novel institutional approach. Ecosyst Serv 10:144–154 DOI: 10.1016/j.ecoser.2014.08.008
    • (2014) Ecosyst Serv , vol.10 , pp. 144-154
    • Kolinjivadi, V.1    Adamowski, J.2    Kosoy, N.3
  • 40
    • 33847740591 scopus 로고    scopus 로고
    • Assessment of rainfall–runoff models based upon wavelet analysis
    • Lane SN (2007) Assessment of rainfall–runoff models based upon wavelet analysis. Hydrol Process 21:586–607 DOI: 10.1002/hyp.6249
    • (2007) Hydrol Process , vol.21 , pp. 586-607
    • Lane, S.N.1
  • 42
    • 77951662436 scopus 로고    scopus 로고
    • Potential of support vector regression for prediction of monthly streamflow using endogenous property
    • Maity R, Bhagwat PP, Bhatnagar A (2010) Potential of support vector regression for prediction of monthly streamflow using endogenous property. Hydrol Process 24:917–923 DOI: 10.1002/hyp.7535
    • (2010) Hydrol Process , vol.24 , pp. 917-923
    • Maity, R.1    Bhagwat, P.P.2    Bhatnagar, A.3
  • 44
    • 82155179310 scopus 로고    scopus 로고
    • Agricultural drought forecasting using satellite images, climate indices and artificial neural network
    • Marj AF, Meijerink AM (2011) Agricultural drought forecasting using satellite images, climate indices and artificial neural network. Int J Remote Sens 32(24):9707–9719 DOI: 10.1080/01431161.2011.575896
    • (2011) Int J Remote Sens , vol.32 , Issue.24 , pp. 9707-9719
    • Marj, A.F.1    Meijerink, A.M.2
  • 46
    • 29144477214 scopus 로고    scopus 로고
    • Drought forecasting using stochastic models
    • Mishra AK, Desai VR (2005) Drought forecasting using stochastic models. Stoch Env Res Risk Assess 19(5):326–339 DOI: 10.1007/s00477-005-0238-4
    • (2005) Stoch Env Res Risk Assess , vol.19 , Issue.5 , pp. 326-339
    • Mishra, A.K.1    Desai, V.R.2
  • 47
    • 33747853860 scopus 로고    scopus 로고
    • Drought forecasting using feed-forward recursive neural network
    • Mishra AK, Desai VR (2006) Drought forecasting using feed-forward recursive neural network. Ecol Model 198(1–2):127–138 DOI: 10.1016/j.ecolmodel.2006.04.017
    • (2006) Ecol Model , vol.198 , Issue.1-2 , pp. 127-138
    • Mishra, A.K.1    Desai, V.R.2
  • 48
    • 77956191461 scopus 로고    scopus 로고
    • A review of drought concepts
    • Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 391(1–2):202–216 DOI: 10.1016/j.jhydrol.2010.07.012
    • (2010) J Hydrol , vol.391 , Issue.1-2 , pp. 202-216
    • Mishra, A.K.1    Singh, V.P.2
  • 49
    • 84872901643 scopus 로고    scopus 로고
    • Simulating hydrological drought properties at different spatial units in the United States based on wavelet-bayesian approach
    • Mishra AK, Singh VP (2012) Simulating hydrological drought properties at different spatial units in the United States based on wavelet-bayesian approach. Earth Interact 16(17):1–23 DOI: 10.1175/2012EI000453.1
    • (2012) Earth Interact , vol.16 , Issue.17 , pp. 1-23
    • Mishra, A.K.1    Singh, V.P.2
  • 50
    • 36348930024 scopus 로고    scopus 로고
    • Drought forecasting using a hybrid stochastic and neural network model
    • Mishra AK, Desai VR, Singh VP (2007) Drought forecasting using a hybrid stochastic and neural network model. J Hydrol Eng 12:626–638 DOI: 10.1061/(ASCE)1084-0699(2007)12:6(626)
    • (2007) J Hydrol Eng , vol.12 , pp. 626-638
    • Mishra, A.K.1    Desai, V.R.2    Singh, V.P.3
  • 51
    • 37249024658 scopus 로고    scopus 로고
    • Drought forecasting using artificial neural networks and time series of drought indices
    • Morid S, Smakhtin V, Bagherzadeh K (2007) Drought forecasting using artificial neural networks and time series of drought indices. Int J Climatol 27(15):2103–2111 DOI: 10.1002/joc.1498
    • (2007) Int J Climatol , vol.27 , Issue.15 , pp. 2103-2111
    • Morid, S.1    Smakhtin, V.2    Bagherzadeh, K.3
  • 53
    • 84870234964 scopus 로고    scopus 로고
    • Using discrete wavelet transforms to analyze trends in streamflow and precipitation in Quebec and Ontario (1954–2008)
    • Nalley D, Adamowski J, Khalil B (2012) Using discrete wavelet transforms to analyze trends in streamflow and precipitation in Quebec and Ontario (1954–2008). J Hydrol 475:204–228 DOI: 10.1016/j.jhydrol.2012.09.049
    • (2012) J Hydrol , vol.475 , pp. 204-228
    • Nalley, D.1    Adamowski, J.2    Khalil, B.3
  • 54
    • 84881002988 scopus 로고    scopus 로고
    • Trend detection in surface air temperature in Ontario and Quebec, Canada during 1967–2006 using the discrete wavelet transform
    • Nalley D, Adamowski J, Khalil B, Ozga-Zielinski B (2013) Trend detection in surface air temperature in Ontario and Quebec, Canada during 1967–2006 using the discrete wavelet transform. J Atmos Res 132(133):375–398 DOI: 10.1016/j.atmosres.2013.06.011
    • (2013) J Atmos Res , vol.132 , Issue.133 , pp. 375-398
    • Nalley, D.1    Adamowski, J.2    Khalil, B.3    Ozga-Zielinski, B.4
  • 56
    • 84900481738 scopus 로고    scopus 로고
    • Applications of hybrid wavelet-artificial intelligence models in hydrology: a review
    • Nourani V, Baghanam A, Adamowski J, Kisi O (2014) Applications of hybrid wavelet-artificial intelligence models in hydrology: a review. J Hydrol 514:358–377 DOI: 10.1016/j.jhydrol.2014.03.057
    • (2014) J Hydrol , vol.514 , pp. 358-377
    • Nourani, V.1    Baghanam, A.2    Adamowski, J.3    Kisi, O.4
  • 57
    • 0141994478 scopus 로고    scopus 로고
    • Drought indices and their application to East Africa
    • Ntale HK, Gan TY (2003) Drought indices and their application to East Africa. Int J Climatol 23(11):1335–1357 DOI: 10.1002/joc.931
    • (2003) Int J Climatol , vol.23 , Issue.11 , pp. 1335-1357
    • Ntale, H.K.1    Gan, T.Y.2
  • 58
    • 84858322934 scopus 로고    scopus 로고
    • Long lead time drought forecasting using a wavelet and fuzzy logic combination model: a case study in Texas
    • Ozger M, Mishra AK, Singh VP (2012) Long lead time drought forecasting using a wavelet and fuzzy logic combination model: a case study in Texas. J Hydrometeorol 13(1):284–297 DOI: 10.1175/JHM-D-10-05007.1
    • (2012) J Hydrometeorol , vol.13 , Issue.1 , pp. 284-297
    • Ozger, M.1    Mishra, A.K.2    Singh, V.P.3
  • 60
    • 34447527322 scopus 로고    scopus 로고
    • Wavelet and neuro-fuzzy conjunction model for precipitation forecasting
    • Partal T, Kisi O (2007) Wavelet and neuro-fuzzy conjunction model for precipitation forecasting. J Hydrol 342(1–2):199–212 DOI: 10.1016/j.jhydrol.2007.05.026
    • (2007) J Hydrol , vol.342 , Issue.1-2 , pp. 199-212
    • Partal, T.1    Kisi, O.2
  • 61
    • 48349114106 scopus 로고    scopus 로고
    • Stochastic predictions of drought class transitions
    • Paulo A, Pereira L (2008) Stochastic predictions of drought class transitions. Water Resour Manag 22(9):1277–1296 DOI: 10.1007/s11269-007-9225-5
    • (2008) Water Resour Manag , vol.22 , Issue.9 , pp. 1277-1296
    • Paulo, A.1    Pereira, L.2
  • 62
    • 22144456439 scopus 로고    scopus 로고
    • Drought class transition analysis through Markov and Loglinear models, an approach to early warning
    • Paulo A, Ferreira E, Coelho C, Pereira L (2005) Drought class transition analysis through Markov and Loglinear models, an approach to early warning. Agric Water Manag 77(1–3):59–81 DOI: 10.1016/j.agwat.2004.09.039
    • (2005) Agric Water Manag , vol.77 , Issue.1-3 , pp. 59-81
    • Paulo, A.1    Ferreira, E.2    Coelho, C.3    Pereira, L.4
  • 63
    • 84888074899 scopus 로고    scopus 로고
    • Spatial and temporal trends of mean and extreme rainfall and temperature for the 33 urban centres of the arid and semi-arid state of Rajasthan, India
    • Pingale S, Khare D, Jat M, Adamowski J (2014) Spatial and temporal trends of mean and extreme rainfall and temperature for the 33 urban centres of the arid and semi-arid state of Rajasthan, India. J Atmos Res 138:73–90 DOI: 10.1016/j.atmosres.2013.10.024
    • (2014) J Atmos Res , vol.138 , pp. 73-90
    • Pingale, S.1    Khare, D.2    Jat, M.3    Adamowski, J.4
  • 64
    • 85028135148 scopus 로고    scopus 로고
    • Wavelet-based multiscale performance analysis: An approach to assess and improve hydrological models
    • Rathinasamy M, Khosa R, Adamowski J, Ch S, Partheepan G, Anand J, Narsimlu B (2014) Wavelet-based multiscale performance analysis: an approach to assess and improve hydrological models. Water Resour Res 50(12):9721–9737. doi:10.1002/2013WR014650 DOI: 10.1002/2013WR014650
    • (2014) Water Resour Res , vol.50 , Issue.12 , pp. 9721-9737
    • Rathinasamy, M.1    Khosa, R.2    Adamowski, J.3    Ch, S.4    Partheepan, G.5    Anand, J.6    Narsimlu, B.7
  • 66
    • 78649838124 scopus 로고    scopus 로고
    • Guidelines for planning and implementing drought mitigation measures
    • Rossi G, Vega T, Bonaccorso B, (eds), Springer, Netherlands
    • Rossi G, Castiglione L, Bonaccorso B (2007) Guidelines for planning and implementing drought mitigation measures. In: Rossi G, Vega T, Bonaccorso B (eds) Methods and tools for drought analysis and management. Springer, Netherlands, pp 325–247 DOI: 10.1007/978-1-4020-5924-7_16
    • (2007) Methods and tools for drought analysis and management , pp. 247-325
    • Rossi, G.1    Castiglione, L.2    Bonaccorso, B.3
  • 67
    • 80052788047 scopus 로고    scopus 로고
    • Land use and land cover classification over a large area in Iran based on single date analysis of satellite imagery
    • Saadat H, Adamowski J, Bonnell R, Sharifi F, Namdar M, Ale-Ebrahim S (2011) Land use and land cover classification over a large area in Iran based on single date analysis of satellite imagery. J Photogramm Remote Sens 66:608–619 DOI: 10.1016/j.isprsjprs.2011.04.001
    • (2011) J Photogramm Remote Sens , vol.66 , pp. 608-619
    • Saadat, H.1    Adamowski, J.2    Bonnell, R.3    Sharifi, F.4    Namdar, M.5    Ale-Ebrahim, S.6
  • 68
    • 0034036602 scopus 로고    scopus 로고
    • Coherent modes in multiscale variability of streamflow over the United States
    • Saco P, Kumar P (2000) Coherent modes in multiscale variability of streamflow over the United States. Water Resour Res 36(4):1049–1067 DOI: 10.1029/1999WR900345
    • (2000) Water Resour Res , vol.36 , Issue.4 , pp. 1049-1067
    • Saco, P.1    Kumar, P.2
  • 69
    • 84907914315 scopus 로고    scopus 로고
    • Exploring the attributes, strategies and contextual knowledge of champions of change in the Canadian water sector
    • Straith D, Adamowski J, Reilly K (2014) Exploring the attributes, strategies and contextual knowledge of champions of change in the Canadian water sector. Can Water Resour J 39(3):255–269 DOI: 10.1080/07011784.2014.942576
    • (2014) Can Water Resour J , vol.39 , Issue.3 , pp. 255-269
    • Straith, D.1    Adamowski, J.2    Reilly, K.3
  • 70
    • 84885070735 scopus 로고    scopus 로고
    • Urban water demand forecasting and uncertainty assessment using ensemble wavelet-bootstrap-neural network models
    • Tiwari M, Adamowski J (2014) Urban water demand forecasting and uncertainty assessment using ensemble wavelet-bootstrap-neural network models. Water Resour Res 49(10):6486–6507 DOI: 10.1002/wrcr.20517
    • (2014) Water Resour Res , vol.49 , Issue.10 , pp. 6486-6507
    • Tiwari, M.1    Adamowski, J.2
  • 71
    • 78149408167 scopus 로고    scopus 로고
    • Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN (WBANN) hybrid approach
    • Tiwari MK, Chatterjee C (2010) Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN (WBANN) hybrid approach. J Hydrol 394:458–470 DOI: 10.1016/j.jhydrol.2010.10.001
    • (2010) J Hydrol , vol.394 , pp. 458-470
    • Tiwari, M.K.1    Chatterjee, C.2
  • 72
    • 1842430858 scopus 로고    scopus 로고
    • Towards a drought watch system based on spatial SPI
    • Tsakiris G, Vangelis H (2004) Towards a drought watch system based on spatial SPI. Water Resour Manage 18(1):1–12 DOI: 10.1023/B:WARM.0000015410.47014.a4
    • (2004) Water Resour Manage , vol.18 , Issue.1 , pp. 1-12
    • Tsakiris, G.1    Vangelis, H.2
  • 75
    • 68349105875 scopus 로고    scopus 로고
    • A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
    • Wang WC, Chau KW, Cheng CT, Qiu L (2009) A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J Hydrol 374(3–4):294–306 DOI: 10.1016/j.jhydrol.2009.06.019
    • (2009) J Hydrol , vol.374 , Issue.3-4 , pp. 294-306
    • Wang, W.C.1    Chau, K.W.2    Cheng, C.T.3    Qiu, L.4
  • 76
    • 0037243071 scopus 로고    scopus 로고
    • Time series forecasting using a hybrid ARIMA and neural network model
    • Zhang GP (2003) Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50:159–175 DOI: 10.1016/S0925-2312(01)00702-0
    • (2003) Neurocomputing , vol.50 , pp. 159-175
    • Zhang, G.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.