메뉴 건너뛰기




Volumn , Issue , 2014, Pages

Geodesic finite mixture models

Author keywords

[No Author keywords available]

Indexed keywords

GEODESY; IMAGE SEGMENTATION; LARGE DATASET; MAXIMUM PRINCIPLE; MIXTURES;

EID: 85087241314     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.5244/c.28.91     Document Type: Conference Paper
Times cited : (14)

References (35)
  • 8
    • 22044456268 scopus 로고    scopus 로고
    • Symplectic methods for the approximation of the exponential map and the newton iteration on riemannian submanifolds
    • J.-P. Dedieu and D. Nowicki. Symplectic methods for the approximation of the exponential map and the newton iteration on riemannian submanifolds. Journal of Complexity, 21(4):487-501, 2005.
    • (2005) Journal of Complexity , vol.21 , Issue.4 , pp. 487-501
    • Dedieu, J.-P.1    Nowicki, D.2
  • 10
    • 4043092663 scopus 로고    scopus 로고
    • Principal geodesic analysis for the study of nonlinear statistics of shape
    • P. Fletcher, C. Lu, S. Pizer, and S. Joshi. Principal Geodesic Analysis for the Study of Nonlinear Statistics of Shape. IEEE Transactions on Medical Imaging, 23(8):995-1005, 2004.
    • (2004) IEEE Transactions on Medical Imaging , vol.23 , Issue.8 , pp. 995-1005
    • Fletcher, P.1    Lu, C.2    Pizer, S.3    Joshi, S.4
  • 12
    • 84862545853 scopus 로고    scopus 로고
    • Natural metrics and least-committed priors for articulated tracking
    • S. Hauberg, S. Sommer, and K. S. Pedersen. Natural metrics and least-committed priors for articulated tracking. Image and Vision Computing, 30(6):453-461, 2012.
    • (2012) Image and Vision Computing , vol.30 , Issue.6 , pp. 453-461
    • Hauberg, S.1    Sommer, S.2    Pedersen, K.S.3
  • 13
    • 77949381107 scopus 로고    scopus 로고
    • Intrinsic shape analysis: Geodesic PCA for riemannian manifolds modulo isometric lie group actions
    • S. Huckemann, T. Hotz, and A. Munk. Intrinsic Shape analysis: Geodesic PCA for Riemannian Manifolds Modulo Isometric Lie Group Actions. Statistica Sinica, 20: 1-100, 2010.
    • (2010) Statistica Sinica , vol.20 , pp. 1-100
    • Huckemann, S.1    Hotz, T.2    Munk, A.3
  • 17
    • 84980162923 scopus 로고
    • Riemannian center of mass and mollifier smoothing
    • H. Karcher. Riemannian center of mass and mollifier smoothing. Communications on Pure and Applied Mathematics, 30(5):509-541, 1977.
    • (1977) Communications on Pure and Applied Mathematics , vol.30 , Issue.5 , pp. 509-541
    • Karcher, H.1
  • 18
    • 27844605876 scopus 로고    scopus 로고
    • Probabilistic non-linear principal component analysis with gaussian process latent variable models
    • N. D. Lawrence. Probabilistic Non-linear Principal Component Analysis with Gaussian Process Latent Variable Models. Journal of Machine Learning Research, 6:1783-1816, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1783-1816
    • Lawrence, N.D.1
  • 19
    • 84862289690 scopus 로고    scopus 로고
    • Learning for larger datasets with the gaussian process latent variable model
    • N. D. Lawrence. Learning for Larger Datasets with the Gaussian Process Latent Variable Model. Journal of Machine Learning Research - Proceedings Track, 2:243-250, 2007.
    • (2007) Journal of Machine Learning Research - Proceedings Track , vol.2 , pp. 243-250
    • Lawrence, N.D.1
  • 22
    • 20744434706 scopus 로고    scopus 로고
    • Kernel density estimation on riemannian manifolds
    • B. Pelletier. Kernel Density Estimation on Riemannian Manifolds. Statistics & Probability Letters, 73(3):297-304, 2005.
    • (2005) Statistics & Probability Letters , vol.73 , Issue.3 , pp. 297-304
    • Pelletier, B.1
  • 23
    • 33749642835 scopus 로고    scopus 로고
    • Intrinsic statistics on riemannian manifolds: Basic tools for geometric measurements
    • July
    • X. Pennec. Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements. J. Math. Imaging Vis., 25(1):127-154, July 2006.
    • (2006) J. Math. Imaging Vis. , vol.25 , Issue.1 , pp. 127-154
    • Pennec, X.1
  • 32
    • 79955479957 scopus 로고    scopus 로고
    • Manifold valued statistics, exact principal geodesic analysis and the effect of linear approximations
    • S. Sommer, F. Lauze, S. Hauberg, and M. Nielsen. Manifold Valued Statistics, Exact Principal Geodesic Analysis and the Effect of Linear Approximations. In European Conference on Computer Vision, 2010.
    • (2010) European Conference on Computer Vision
    • Sommer, S.1    Lauze, F.2    Hauberg, S.3    Nielsen, M.4
  • 33


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.