메뉴 건너뛰기




Volumn 2, Issue , 2007, Pages 243-250

Learning for larger datasets with the Gaussian process latent variable model

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARK DATA; DATA SETS; GAUSSIAN PROCESS REGRESSION; GAUSSIAN PROCESSES; LATENT VARIABLE MODELS;

EID: 84862289690     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (56)

References (31)
  • 3
    • 0027574219 scopus 로고
    • Analysis of multiphase flows using dual-energy gamma densitometry and neural networks
    • 4
    • C. M. Bishop and G. D. James. Analysis of multiphase flows using dual-energy gamma densitometry and neural networks. Nuclear Instruments and Methods in Physics Research, A327: 580-593, 1993. 4
    • (1993) Nuclear Instruments and Methods in Physics Research , vol.A327 , pp. 580-593
    • Bishop, C.M.1    James, G.D.2
  • 6
    • 84862284728 scopus 로고    scopus 로고
    • Sparsity in Gaussian processes: Questions
    • June. 3
    • L. Csató. Sparsity in Gaussian processes: Questions. Talk at the Sheffield Gaussian Process Round Table., June 2005. Slides available from http://www.dcs.shef.ac.uk/ml/gprt/slides/lehelcsato.pdf. 3
    • (2005) Talk at the Sheffield Gaussian Process Round Table
    • Csató, L.1
  • 7
    • 0038891993 scopus 로고    scopus 로고
    • Sparse on-line Gaussian processes
    • 2, 3
    • L. Csató and M. Opper. Sparse on-line Gaussian processes. Neural Computation, 14(3):641-668, 2002. 2, 3
    • (2002) Neural Computation , vol.14 , Issue.3 , pp. 641-668
    • Csató, L.1    Opper, M.2
  • 9
    • 84898980901 scopus 로고    scopus 로고
    • Gaussian process models for visualisation of high dimensional data
    • S. Thrun, L. Saul, and B. Schölkopf, editors, Cambridge, MA, MIT Press. 1, 2
    • N. D. Lawrence. Gaussian process models for visualisation of high dimensional data. In S. Thrun, L. Saul, and B. Schölkopf, editors, Advances in Neural Information Processing Systems, volume 16, pages 329-336, Cambridge, MA, 2004. MIT Press. 1, 2
    • (2004) Advances in Neural Information Processing Systems , vol.16 , pp. 329-336
    • Lawrence, N.D.1
  • 11
    • 27844605876 scopus 로고    scopus 로고
    • Probabilistic non-linear principal component analysis with Gaussian process latent variable models
    • Nov. 1, 2, 4, 5
    • N. D. Lawrence. Probabilistic non-linear principal component analysis with Gaussian process latent variable models. Journal of Machine Learning Research, 6:1783-1816, Nov 2005. 1, 2, 4, 5
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1783-1816
    • Lawrence, N.D.1
  • 12
    • 33749268385 scopus 로고    scopus 로고
    • Local distance preservation in the GP-LVM through back constraints
    • W. Cohen and A. Moore, editors, Omnipress. ISBN 1-59593-383-2. 5, 6
    • N. D. Lawrence and J. Quiñonero Candela. Local distance preservation in the GP-LVM through back constraints. In W. Cohen and A. Moore, editors, Proceedings of the International Conference in Machine Learning, volume 23, pages 513-520. Omnipress, 2006. ISBN 1-59593-383-2. 5, 6
    • (2006) Proceedings of the International Conference in Machine Learning , vol.23 , pp. 513-520
    • Lawrence, N.D.1    Quiñonero Candela, J.2
  • 17
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • 3
    • T. Poggio and F. Girosi. Networks for approximation and learning. Proceedings of the IEEE, 78(9):1481-1497, 1990. 3
    • (1990) Proceedings of the IEEE , vol.78 , Issue.9 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 18
    • 29144453489 scopus 로고    scopus 로고
    • A unifying view of sparse approximate Gaussian process regression
    • 1, 2, 3, 5, 7
    • J. Quiñonero Candela and C. E. Rasmussen. A unifying view of sparse approximate Gaussian process regression. Journal of Machine Learning Research, 6:1939-1959, 2005. 1, 2, 3, 5, 7
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1939-1959
    • Quiñonero Candela, J.1    Rasmussen, C.E.2
  • 24
    • 84864026688 scopus 로고    scopus 로고
    • Modeling human motion using binary latent variables
    • B. Schölkopf, J. C. Platt, and T. Hofmann, editors, Cambridge, MA, MIT Press. 5, 7
    • G. W. Taylor, G. E. Hinton, and S. Roweis. Modeling human motion using binary latent variables. In B. Schölkopf, J. C. Platt, and T. Hofmann, editors, Advances in Neural Information Processing Systems, volume 19, Cambridge, MA, 2007. MIT Press. 5, 7
    • (2007) Advances in Neural Information Processing Systems , vol.19
    • Taylor, G.W.1    Hinton, G.E.2    Roweis, S.3
  • 26
    • 0034320395 scopus 로고    scopus 로고
    • A Bayesian committee machine
    • 2, 3
    • V. Tresp. A Bayesian committee machine. Neural Computation, 12(11):2719-2741, 2000. 2, 3
    • (2000) Neural Computation , vol.12 , Issue.11 , pp. 2719-2741
    • Tresp, V.1
  • 27


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.