메뉴 건너뛰기




Volumn 12, Issue 7, 2020, Pages

Land-use land-cover classification by machine learning classifiers for satellite observations-A review

Author keywords

Artificial neural network; Earth observations; Land use land cover (LULC); Machine learning algorithm; Random forest

Indexed keywords

DECISION TREES; DEVELOPING COUNTRIES; FUZZY NEURAL NETWORKS; LAND USE; LEARNING SYSTEMS; MEAN SQUARE ERROR; PARAMETER ESTIMATION; PHOTOMAPPING; POPULATION STATISTICS; SUPPORT VECTOR MACHINES;

EID: 85084263394     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs12071135     Document Type: Review
Times cited : (706)

References (110)
  • 1
    • 84939260742 scopus 로고    scopus 로고
    • Change analysis of land use/land cover and modelling urban growth in Greater Doha, Qatar
    • Hashem, N.; Balakrishnan, P. Change analysis of land use/land cover and modelling urban growth in Greater Doha, Qatar. Ann. Gis 2015, 21, 233-247.
    • (2015) Ann. Gis , vol.21 , pp. 233-247
    • Hashem, N.1    Balakrishnan, P.2
  • 2
    • 84869497059 scopus 로고    scopus 로고
    • Assessment of land use/land cover change in the North-West District of Delhi using remote sensing and GIS techniques
    • Rahman, A.; Kumar, S.; Fazal, S.; Siddiqui, M.A. Assessment of land use/land cover change in the North-West District of Delhi using remote sensing and GIS techniques. J. Indian Soc. Remote Sens. 2012, 40, 689-697.
    • (2012) J. Indian Soc. Remote Sens. , vol.40 , pp. 689-697
    • Rahman, A.1    Kumar, S.2    Fazal, S.3    Siddiqui, M.A.4
  • 3
    • 85019016758 scopus 로고    scopus 로고
    • Assessing spatiotemporal eco-environmental vulnerability by Landsat data
    • Liou, Y.A.; Nguyen, A.K.; Li, M.H. Assessing spatiotemporal eco-environmental vulnerability by Landsat data. Ecol. Indic. 2017, 80, 52-65.
    • (2017) Ecol. Indic. , vol.80 , pp. 52-65
    • Liou, Y.A.1    Nguyen, A.K.2    Li, M.H.3
  • 4
    • 85064875643 scopus 로고    scopus 로고
    • Mapping global eco-environment vulnerability due to human and nature disturbances
    • Nguyen, K.A.; Liou, Y.A. Mapping global eco-environment vulnerability due to human and nature disturbances. MethodsX 2019, 6, 862-875.
    • (2019) MethodsX , vol.6 , pp. 862-875
    • Nguyen, K.A.1    Liou, Y.A.2
  • 5
    • 85061371220 scopus 로고    scopus 로고
    • Global mapping of eco-environmental vulnerability from human and nature disturbances
    • Nguyen, K.A.; Liou, Y.A. Global mapping of eco-environmental vulnerability from human and nature disturbances. Sci. Total Environ. 2019, 664, 995-1004.
    • (2019) Sci. Total Environ. , vol.664 , pp. 995-1004
    • Nguyen, K.A.1    Liou, Y.A.2
  • 6
    • 85084934514 scopus 로고    scopus 로고
    • Wetland habitat vulnerability of lower Punarbhaba river basin of the uplifted Barind region of Indo-Bangladesh
    • Talukdar, S.; Pal, S. Wetland habitat vulnerability of lower Punarbhaba river basin of the uplifted Barind region of Indo-Bangladesh. Geocarto Int. 2018, 1-30.
    • (2018) Geocarto Int. , pp. 1-30
    • Talukdar, S.1    Pal, S.2
  • 7
    • 84964318246 scopus 로고    scopus 로고
    • Zoning eco-environmental vulnerability for environmental management and protection
    • Nguyen, A.K.; Liou, Y.A.; Li, M.H.; Tran, T.A. Zoning eco-environmental vulnerability for environmental management and protection. Ecol. Indic. 2016, 69, 100-117.
    • (2016) Ecol. Indic. , vol.69 , pp. 100-117
    • Nguyen, A.K.1    Liou, Y.A.2    Li, M.H.3    Tran, T.A.4
  • 8
    • 84893783184 scopus 로고    scopus 로고
    • Changes in glaciers and glacial lakes and the identification of dangerous glacial lakes in the Pumqu River Basin, Xizang (Tibet)
    • Che, T.; Xiao, L.; Liou, Y.A. Changes in glaciers and glacial lakes and the identification of dangerous glacial lakes in the Pumqu River Basin, Xizang (Tibet). Adv. Meteorol. 2014, 2014, 903709.
    • (2014) Adv. Meteorol. , vol.2014 , pp. 903709
    • Che, T.1    Xiao, L.2    Liou, Y.A.3
  • 9
    • 84930013468 scopus 로고    scopus 로고
    • Object-based flood mapping and affected rice field estimation with Landsat 8 OLI and MODIS data
    • Dao, P.D.; Liou, Y.A. Object-based flood mapping and affected rice field estimation with Landsat 8 OLI and MODIS data. Remote Sens. 2015, 7, 5077-5097.
    • (2015) Remote Sens. , vol.7 , pp. 5077-5097
    • Dao, P.D.1    Liou, Y.A.2
  • 10
    • 77954843362 scopus 로고    scopus 로고
    • Use of high-resolution FORMOSAT-2 satellite images for post-earthquake disaster assessment: A study following the 12 May 2008 Wenchuan Earthquake
    • Liou, Y.A.; Kar, S.K.; Chang, L. Use of high-resolution FORMOSAT-2 satellite images for post-earthquake disaster assessment: A study following the 12 May 2008 Wenchuan Earthquake. Int. J. Remote Sens. 2010, 31, 3355-3368.
    • (2010) Int. J. Remote Sens. , vol.31 , pp. 3355-3368
    • Liou, Y.A.1    Kar, S.K.2    Chang, L.3
  • 11
    • 84872386747 scopus 로고    scopus 로고
    • Assessment of disaster losses in rice paddy field and yield after Tsunami induced by the 2011 great east Japan earthquake
    • Liou, Y.A.; Sha, H.C.; Chen, T.M.; Wang, T.S.; Li, Y.T.; Lai, Y.C.; Lu, L.T. Assessment of disaster losses in rice paddy field and yield after Tsunami induced by the 2011 great east Japan earthquake. J. Mar. Sci. Technol. 2012, 20, 618-623.
    • (2012) J. Mar. Sci. Technol. , vol.20 , pp. 618-623
    • Liou, Y.A.1    Sha, H.C.2    Chen, T.M.3    Wang, T.S.4    Li, Y.T.5    Lai, Y.C.6    Lu, L.T.7
  • 12
    • 85076579843 scopus 로고    scopus 로고
    • Debris Flow Susceptibility Mapping Using Machine-Learning Techniques in Shigatse Area, China
    • Zhang, Y.; Ge, T.; Tian, W.; Liou, Y.A. Debris Flow Susceptibility Mapping Using Machine-Learning Techniques in Shigatse Area, China. Remote Sens. 2019, 11, 2801.
    • (2019) Remote Sens. , vol.11 , pp. 2801
    • Zhang, Y.1    Ge, T.2    Tian, W.3    Liou, Y.A.4
  • 13
    • 85066147406 scopus 로고    scopus 로고
    • Effects of damming on the hydrological regime of Punarbhaba river basin wetlands
    • Talukdar, S.; Pal, S. Effects of damming on the hydrological regime of Punarbhaba river basin wetlands. Ecol. Eng. 2019, 135, 61-74.
    • (2019) Ecol. Eng. , vol.135 , pp. 61-74
    • Talukdar, S.1    Pal, S.2
  • 14
    • 85078703538 scopus 로고    scopus 로고
    • Dynamics of ecosystem services (ESs) in response to land use land cover (LU/LC) changes in the lower Gangetic plain of India
    • Talukdar, S.; Singha, P.; Mahato, S.; Praveen, B.; Rahman, A. Dynamics of ecosystem services (ESs) in response to land use land cover (LU/LC) changes in the lower Gangetic plain of India. Ecol. Indic. 2020, 112, 106121.
    • (2020) Ecol. Indic. , vol.112 , pp. 106121
    • Talukdar, S.1    Singha, P.2    Mahato, S.3    Praveen, B.4    Rahman, A.5
  • 15
    • 85052109808 scopus 로고    scopus 로고
    • Land-use change from arable lands to orchards reduced soil erosion and increased nutrient loss in a small catchment
    • Chen, Z.; Wang, L.; Wei, A.; Gao, J.; Lu, Y.; Zhou, J. Land-use change from arable lands to orchards reduced soil erosion and increased nutrient loss in a small catchment. Sci. Total Environ. 2019, 648, 1097-1104.
    • (2019) Sci. Total Environ. , vol.648 , pp. 1097-1104
    • Chen, Z.1    Wang, L.2    Wei, A.3    Gao, J.4    Lu, Y.5    Zhou, J.6
  • 16
    • 85017609087 scopus 로고    scopus 로고
    • A SAR-Based Index for Landscape Changes in African Savannas
    • Braun, A.; Hochschild, V. A SAR-Based Index for Landscape Changes in African Savannas. Remote Sens. 2017, 9, 359.
    • (2017) Remote Sens. , vol.9 , pp. 359
    • Braun, A.1    Hochschild, V.2
  • 17
    • 85077379362 scopus 로고    scopus 로고
    • Soil salinity assessment by using near-infrared channel and Vegetation Soil Salinity Index derived from Landsat 8 OLI data: A case study in the Tra Vinh Province, Mekong Delta, Vietnam
    • Nguyen, K.A.; Liou, Y.A.; Tran, H.P.; Hoang, P.P.; Nguyen, T.H. Soil salinity assessment by using near-infrared channel and Vegetation Soil Salinity Index derived from Landsat 8 OLI data: A case study in the Tra Vinh Province, Mekong Delta, Vietnam. Prog. Earth Planet. Sci. 2020, 7, 1-16.
    • (2020) Prog. Earth Planet. Sci. , vol.7 , pp. 1-16
    • Nguyen, K.A.1    Liou, Y.A.2    Tran, H.P.3    Hoang, P.P.4    Nguyen, T.H.5
  • 19
    • 55249107863 scopus 로고    scopus 로고
    • Analyzing Land Use/Land Cover Changes Using Remote Sensing and GIS in Rize, North-East Turkey
    • Reis, S. Analyzing Land Use/Land Cover Changes Using Remote Sensing and GIS in Rize, North-East Turkey. Sensors 2008, 8, 6188-6202.
    • (2008) Sensors , vol.8 , pp. 6188-6202
    • Reis, S.1
  • 20
    • 85070355555 scopus 로고    scopus 로고
    • Changing pattern of urban landscape and its effect on land surface temperature in and around Delhi
    • Dutta, D.; Rahman, A.; Paul, S.K.; Kundu, A. Changing pattern of urban landscape and its effect on land surface temperature in and around Delhi. Environ. Monit. Assess. 2019, 191, 551.
    • (2019) Environ. Monit. Assess. , vol.191 , pp. 551
    • Dutta, D.1    Rahman, A.2    Paul, S.K.3    Kundu, A.4
  • 21
    • 85058874268 scopus 로고    scopus 로고
    • Assessing the Effects of Land-Use Types in Surface Urban Heat Islands for Developing Comfortable Living in Hanoi City
    • Hoan, N.T.; Liou, Y.A.; Nguyen, K.A.; Sharma, R.C.; Tran, D.P.; Liou, C.L.; Cham, D.D. Assessing the Effects of Land-Use Types in Surface Urban Heat Islands for Developing Comfortable Living in Hanoi City. Remote Sens. 2018, 10, 1965.
    • (2018) Remote Sens. , vol.10 , pp. 1965
    • Hoan, N.T.1    Liou, Y.A.2    Nguyen, K.A.3    Sharma, R.C.4    Tran, D.P.5    Liou, C.L.6    Cham, D.D.7
  • 23
    • 85085351991 scopus 로고    scopus 로고
    • Assessment of public open spaces (POS) and landscape quality based on per capita POS index in Delhi, India
    • Kumari, B.; Tayyab, M.; Hang, H.T.; Khan, M.F.; Rahman, A. Assessment of public open spaces (POS) and landscape quality based on per capita POS index in Delhi, India. SN Appl. Sci. 2019, 1, 368.
    • (2019) SN Appl. Sci. , vol.1 , pp. 368
    • Kumari, B.1    Tayyab, M.2    Hang, H.T.3    Khan, M.F.4    Rahman, A.5
  • 24
    • 85049591999 scopus 로고    scopus 로고
    • Assessing the role of hydrological modifications on land use/land cover dynamics in Punarbhaba river basin of Indo-Bangladesh
    • Pal, S.; Talukdar, S. Assessing the role of hydrological modifications on land use/land cover dynamics in Punarbhaba river basin of Indo-Bangladesh. Environ. Dev. Sustain. 2018, 22, 363-382.
    • (2018) Environ. Dev. Sustain. , vol.22 , pp. 363-382
    • Pal, S.1    Talukdar, S.2
  • 25
    • 84978039471 scopus 로고    scopus 로고
    • Influence of anthropogenic land-use change on hillslope erosion in the Waipaoa River Basin, New Zealand
    • Cerovski-Darriau, C.; Roering, J.J. Influence of anthropogenic land-use change on hillslope erosion in the Waipaoa River Basin, New Zealand. Earth Surf. Process. Landf. 2016, 41, 2167-2176.
    • (2016) Earth Surf. Process. Landf. , vol.41 , pp. 2167-2176
    • Cerovski-Darriau, C.1    Roering, J.J.2
  • 26
    • 85079341194 scopus 로고    scopus 로고
    • Groundwater potential zones for sustainable management plans in a river basin of India and Bangladesh
    • Pal, S.; Kundu, S.; Mahato, S. Groundwater potential zones for sustainable management plans in a river basin of India and Bangladesh. J. Clean. Prod. 2020, 257, 120311.
    • (2020) J. Clean. Prod. , vol.257 , pp. 120311
    • Pal, S.1    Kundu, S.2    Mahato, S.3
  • 27
    • 85052614374 scopus 로고    scopus 로고
    • Groundwater potential mapping in a rural river basin by union (OR) and intersection (AND) of four multi-criteria decision-making models
    • Mahato, S.; Pal, S. Groundwater potential mapping in a rural river basin by union (OR) and intersection (AND) of four multi-criteria decision-making models. Nat. Resour. Res. 2019, 28, 523-545.
    • (2019) Nat. Resour. Res. , vol.28 , pp. 523-545
    • Mahato, S.1    Pal, S.2
  • 28
    • 85109372457 scopus 로고    scopus 로고
    • Monitoring of land use/land-cover dynamics using remote sensing: A case of Tana River Basin, Kenya.
    • Langat, P.K.; Kumar, L.; Koech, R.; Ghosh, M.K. Monitoring of land use/land-cover dynamics using remote sensing: A case of Tana River Basin, Kenya. Geocarto Int. 2019.
    • (2019) Geocarto Int.
    • Langat, P.K.1    Kumar, L.2    Koech, R.3    Ghosh, M.K.4
  • 29
    • 17044416524 scopus 로고    scopus 로고
    • The future of satellite remote sensing in hydrogeology
    • Hoffmann, J. The future of satellite remote sensing in hydrogeology. Hydrogeol. J. 2005, 13, 247-250.
    • (2005) Hydrogeol. J. , vol.13 , pp. 247-250
    • Hoffmann, J.1
  • 30
    • 85084259550 scopus 로고    scopus 로고
    • FORMOSAT-2 Quick Imaging. In Optical Payloads for Space Missions
    • Qian, S.-E., Ed.; Wiley: Oxford, UK
    • Liou, Y.-A.; Wu, A.-M.; Lin, H.-Y. FORMOSAT-2 Quick Imaging. In Optical Payloads for Space Missions; Qian, S.-E., Ed.; Wiley: Oxford, UK, 2016; 1008p, ISBN 9781118945148.
    • (2016) , pp. 1008
    • Liou, Y.-A.1    Wu, A.-M.2    Lin, H.-Y.3
  • 31
  • 32
    • 84920092013 scopus 로고    scopus 로고
    • Remote Sensing for Landslide Investigations: An Overview of Recent Achievements and Perspectives
    • Scaioni, M.; Longoni, L.; Melillo, V.; Papini, M. Remote Sensing for Landslide Investigations: An Overview of Recent Achievements and Perspectives. Remote Sens. 2014, 6, 9600-9652.
    • (2014) Remote Sens. , vol.6 , pp. 9600-9652
    • Scaioni, M.1    Longoni, L.2    Melillo, V.3    Papini, M.4
  • 33
    • 77951102454 scopus 로고    scopus 로고
    • Land use and land cover change detection using satellite remote sensing techniques in the mountainous Three Gorges Area, China
    • Chen, Z.; Wang, J. Land use and land cover change detection using satellite remote sensing techniques in the mountainous Three Gorges Area, China. Int. J. Remote Sens. 2010, 31, 1519-1542.
    • (2010) Int. J. Remote Sens. , vol.31 , pp. 1519-1542
    • Chen, Z.1    Wang, J.2
  • 34
    • 4444230479 scopus 로고    scopus 로고
    • Assessment of the effectiveness of support vector machines for hyperspectral data
    • Pal, M.; Mather, P.M. Assessment of the effectiveness of support vector machines for hyperspectral data. Future Gener. Comput. Syst. 2004, 20, 1215-1225.
    • (2004) Future Gener. Comput. Syst. , vol.20 , pp. 1215-1225
    • Pal, M.1    Mather, P.M.2
  • 35
    • 85062910458 scopus 로고    scopus 로고
    • Comparison of two dimensional multitemporal Sentinel-2 data with three-dimensional remote sensing data sources for forest inventory parameter estimation over a boreal forest
    • Wittke, S.; Yu, X.; Karjalainen, M.; Hyyppä, J.; Puttonen, E. Comparison of two dimensional multitemporal Sentinel-2 data with three-dimensional remote sensing data sources for forest inventory parameter estimation over a boreal forest. Int. J. Appl. Earth Obs. Geoinf. 2019, 76, 167-178.
    • (2019) Int. J. Appl. Earth Obs. Geoinf. , vol.76 , pp. 167-178
    • Wittke, S.1    Yu, X.2    Karjalainen, M.3    Hyyppä, J.4    Puttonen, E.5
  • 36
    • 85065724909 scopus 로고    scopus 로고
    • Long-Term Satellite Image Time-Series for Land Use/Land Cover Change Detection Using Refined Open Source Data in a Rural Region
    • Viana, C.M.; Girão, I.; Rocha, J. Long-Term Satellite Image Time-Series for Land Use/Land Cover Change Detection Using Refined Open Source Data in a Rural Region. Remote Sens. 2019, 11, 1104.
    • (2019) Remote Sens. , vol.11 , pp. 1104
    • Viana, C.M.1    Girão, I.2    Rocha, J.3
  • 37
    • 85062891491 scopus 로고    scopus 로고
    • Estimating long-term LULC changes in an agriculture-dominated basin using CORONA (1970) and LISS IV (2013-14) satellite images: A case study of Ramganga River, India
    • Gurjar, S.K.; Tare, V. Estimating long-term LULC changes in an agriculture-dominated basin using CORONA (1970) and LISS IV (2013-14) satellite images: A case study of Ramganga River, India. Environ. Monitor. Assess. 2019, 191, 217.
    • (2019) Environ. Monitor. Assess. , vol.191 , pp. 217
    • Gurjar, S.K.1    Tare, V.2
  • 38
    • 85044120128 scopus 로고    scopus 로고
    • Land cover and land use change analysis using multi-spatial resolution data and object-based image analysis
    • Toure, S.I.; Stow, D.A.; Shih, H.C.; Weeks, J.; Lopez-Carr, D. Land cover and land use change analysis using multi-spatial resolution data and object-based image analysis. Remote Sens. Environ. 2018, 210, 259-268.
    • (2018) Remote Sens. Environ. , vol.210 , pp. 259-268
    • Toure, S.I.1    Stow, D.A.2    Shih, H.C.3    Weeks, J.4    Lopez-Carr, D.5
  • 39
    • 84946139945 scopus 로고    scopus 로고
    • Land use/land cover classification and its change detection using multi-temporal MODIS NDVI data
    • Usman, M.; Liedl, R.; Shahid, M.A.; Abbas, A. Land use/land cover classification and its change detection using multi-temporal MODIS NDVI data. J. Geogr. Sci. 2015, 25, 1479-1506.
    • (2015) J. Geogr. Sci. , vol.25 , pp. 1479-1506
    • Usman, M.1    Liedl, R.2    Shahid, M.A.3    Abbas, A.4
  • 40
    • 27144550151 scopus 로고    scopus 로고
    • Assessment of ASTER Land Cover and MODIS NDVI Data at Multiple Scales for Ecological Characterization of an Arid Urban Center
    • Stefanov, W.L.; Netzband, M. Assessment of ASTER Land Cover and MODIS NDVI Data at Multiple Scales for Ecological Characterization of an Arid Urban Center. Remote Sens. Environ. 2005, 99, 31-43.
    • (2005) Remote Sens. Environ. , vol.99 , pp. 31-43
    • Stefanov, W.L.1    Netzband, M.2
  • 41
    • 85048716904 scopus 로고    scopus 로고
    • Implementation of machine-learning classification in remote sensing: An applied review
    • Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review. Int. J. Remote Sens. 2018, 39, 2784-2817.
    • (2018) Int. J. Remote Sens. , vol.39 , pp. 2784-2817
    • Maxwell, A.E.1    Warner, T.A.2    Fang, F.3
  • 42
    • 84901651305 scopus 로고    scopus 로고
    • Land-use/cover classification in a heterogeneous coastal landscape using Rapid Eye imagery: Evaluating the performance of random forest and support vector machines classifiers
    • Adam, E.; Mutanga, O.; Odindi, J.; Abdel-Rahman, E.M. Land-use/cover classification in a heterogeneous coastal landscape using Rapid Eye imagery: Evaluating the performance of random forest and support vector machines classifiers. Int. J. Remote Sens. 2014, 35, 3440-3458.
    • (2014) Int. J. Remote Sens. , vol.35 , pp. 3440-3458
    • Adam, E.1    Mutanga, O.2    Odindi, J.3    Abdel-Rahman, E.M.4
  • 43
    • 85062337072 scopus 로고    scopus 로고
    • Comparison of machine learning algorithms for classification of LiDAR points for characterization of canola canopy structure
    • Wu, L.; Zhu, X.; Lawes, R.; Dunkerley, D.; Zhang, H. Comparison of machine learning algorithms for classification of LiDAR points for characterization of canola canopy structure. Int. J. Remote Sens. 2019, 40, 5973-5991.
    • (2019) Int. J. Remote Sens. , vol.40 , pp. 5973-5991
    • Wu, L.1    Zhu, X.2    Lawes, R.3    Dunkerley, D.4    Zhang, H.5
  • 44
    • 80053572788 scopus 로고    scopus 로고
    • Supervised and unsupervised landuse map generation from remotely sensed images using ant based systems
    • Halder, A.; Ghosh, A.; Ghosh, S. Supervised and unsupervised landuse map generation from remotely sensed images using ant based systems. Appl. Soft Comput. 2011, 11, 5770-5781.
    • (2011) Appl. Soft Comput. , vol.11 , pp. 5770-5781
    • Halder, A.1    Ghosh, A.2    Ghosh, S.3
  • 46
    • 85054794640 scopus 로고    scopus 로고
    • Guidance on and comparison of machine learning classifiers for Landsat-based land cover and land use mapping
    • Shih, H.C.; Stow, D.A.; Tsai, Y.H. Guidance on and comparison of machine learning classifiers for Landsat-based land cover and land use mapping. Int. J. Remote Sens. 2019, 40, 1248-1274.
    • (2019) Int. J. Remote Sens. , vol.40 , pp. 1248-1274
    • Shih, H.C.1    Stow, D.A.2    Tsai, Y.H.3
  • 49
    • 85051136400 scopus 로고    scopus 로고
    • A 30-m Landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform
    • Teluguntla, P.; Thenkabail, P.S.; Oliphant, A.; Xiong, J.; Gumma, M.K.; Congalton, R.G.; Huete, A. A 30-m Landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 2018, 144, 325-340.
    • (2018) ISPRS J. Photogramm. Remote Sens. , vol.144 , pp. 325-340
    • Teluguntla, P.1    Thenkabail, P.S.2    Oliphant, A.3    Xiong, J.4    Gumma, M.K.5    Congalton, R.G.6    Huete, A.7
  • 50
    • 13344278660 scopus 로고    scopus 로고
    • Random forest classifier for remote sensing classification
    • Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217-222.
    • (2005) Int. J. Remote Sens. , vol.26 , pp. 217-222
    • Pal, M.1
  • 51
    • 0027525734 scopus 로고
    • Artificial neural networks for land-cover classification and mapping
    • Civco, D.L. Artificial neural networks for land-cover classification and mapping. Int. J. Geogr. Inf. Sci. 1993, 7, 173-186.
    • (1993) Int. J. Geogr. Inf. Sci. , vol.7 , pp. 173-186
    • Civco, D.L.1
  • 52
    • 85068525357 scopus 로고    scopus 로고
    • A comparative assessment of machine-learning techniques for land use and land cover classification of the Brazilian tropical savanna using ALOS-2/PALSAR-2 polarimetric images
    • Camargo, F.F.; Sano, E.E.; Almeida, C.M.; Mura, J.C.; Almeida, T. A comparative assessment of machine-learning techniques for land use and land cover classification of the Brazilian tropical savanna using ALOS-2/PALSAR-2 polarimetric images. Remote Sens. 2019, 11, 1600.
    • (2019) Remote Sens. , vol.11 , pp. 1600
    • Camargo, F.F.1    Sano, E.E.2    Almeida, C.M.3    Mura, J.C.4    Almeida, T.5
  • 53
    • 84974801139 scopus 로고    scopus 로고
    • A comparison of machine learning algorithms for mapping of complex surface-mined and agricultural landscapes using ZiYuan-3 stereo satellite imagery
    • Li, X.; Chen, W.; Cheng, X.; Wang, L. A comparison of machine learning algorithms for mapping of complex surface-mined and agricultural landscapes using ZiYuan-3 stereo satellite imagery. Remote Sens. 2016, 8, 514.
    • (2016) Remote Sens. , vol.8 , pp. 514
    • Li, X.1    Chen, W.2    Cheng, X.3    Wang, L.4
  • 54
    • 41249103454 scopus 로고    scopus 로고
    • Mapping land-cover modifications over large areas: A comparison of machine learning algorithms
    • Rogan, J.; Franklin, J.; Stow, D.; Miller, J.; Woodcock, C.; Roberts, D. Mapping land-cover modifications over large areas: A comparison of machine learning algorithms. Remote Sens. Environ. 2008, 112, 2272-2283.
    • (2008) Remote Sens. Environ. , vol.112 , pp. 2272-2283
    • Rogan, J.1    Franklin, J.2    Stow, D.3    Miller, J.4    Woodcock, C.5    Roberts, D.6
  • 55
    • 85084260133 scopus 로고    scopus 로고
    • Evaluation and comparison of eight machine learning models in land use/land cover mapping using Landsat 8 OLI: A case study of the northern region of Iran
    • Jamali, A. Evaluation and comparison of eight machine learning models in land use/land cover mapping using Landsat 8 OLI: A case study of the northern region of Iran. SN Appl. Sci. 2019, 1, 1448.
    • (2019) SN Appl. Sci. , vol.1 , pp. 1448
    • Jamali, A.1
  • 56
    • 85061383356 scopus 로고    scopus 로고
    • A framework for evaluating land use and land cover classification using convolutional neural networks
    • Carranza-García, M.; García-Gutiérrez, J.; Riquelme, J.C. A framework for evaluating land use and land cover classification using convolutional neural networks. Remote Sens. 2019, 11, 274.
    • (2019) Remote Sens. , vol.11 , pp. 274
    • Carranza-García, M.1    García-Gutiérrez, J.2    Riquelme, J.C.3
  • 57
  • 59
    • 48249085703 scopus 로고    scopus 로고
    • PCA-based land-use change detection and analysis using multitemporal and multisensor satellite data
    • Deng, J.S.; Wang, K.; Deng, Y.H.; Qi, G.J. PCA-based land-use change detection and analysis using multitemporal and multisensor satellite data. Int. J. Remote Sens. 2008, 29, 4823-4838.
    • (2008) Int. J. Remote Sens. , vol.29 , pp. 4823-4838
    • Deng, J.S.1    Wang, K.2    Deng, Y.H.3    Qi, G.J.4
  • 60
    • 85038207983 scopus 로고    scopus 로고
    • Improving land use/land cover classification by integrating pixel unmixing and decision tree methods
    • Yang, C.; Wu, G.; Ding, K.; Shi, T.; Li, Q.; Wang, J. Improving land use/land cover classification by integrating pixel unmixing and decision tree methods. Remote Sens. 2017, 9, 1222.
    • (2017) Remote Sens. , vol.9 , pp. 1222
    • Yang, C.1    Wu, G.2    Ding, K.3    Shi, T.4    Li, Q.5    Wang, J.6
  • 61
    • 71249087746 scopus 로고    scopus 로고
    • Improving the accuracy of land use and land cover classification of Landsat data using post-classification enhancement
    • Manandhar, R.; Odeh, I.O.; Ancev, T. Improving the accuracy of land use and land cover classification of Landsat data using post-classification enhancement. Remote Sens. 2009, 1, 330-344.
    • (2009) Remote Sens. , vol.1 , pp. 330-344
    • Manandhar, R.1    Odeh, I.O.2    Ancev, T.3
  • 62
    • 1542289740 scopus 로고    scopus 로고
    • Accuracy assessment using sub-pixel fractional error matrices of global land cover products derived from satellite data
    • Remote Sens. 2020, 12, 1135 22 of 24.
    • Latifovic, R.; Olthof, I. Accuracy assessment using sub-pixel fractional error matrices of global land cover products derived from satellite data. Remote Sens. Environ. 2004, 90, 153-165. Remote Sens. 2020, 12, 1135 22 of 24.
    • (2004) Remote Sens. Environ. , vol.90 , pp. 153-165
    • Latifovic, R.1    Olthof, I.2
  • 63
    • 85007154319 scopus 로고    scopus 로고
    • Detection of land use and land cover change and land surface temperature in English Bazar urban centre
    • Pal, S.; Ziaul, S.K. Detection of land use and land cover change and land surface temperature in English Bazar urban centre. Egypt. J. Remote Sens. Space Sci. 2017, 20, 125-145.
    • (2017) Egypt. J. Remote Sens. Space Sci. , vol.20 , pp. 125-145
    • Pal, S.1    Ziaul, S.K.2
  • 64
    • 79955138431 scopus 로고    scopus 로고
    • Flood and Erosion Induced Population Displacements: A Socio-economic Case Study in the Gangetic Riverine Tract at Malda District, West Bengal, India
    • Iqbal, S. Flood and Erosion Induced Population Displacements: A Socio-economic Case Study in the Gangetic Riverine Tract at Malda District, West Bengal, India. J. Human Ecol. 2010, 30, 201-211.
    • (2010) J. Human Ecol. , vol.30 , pp. 201-211
    • Iqbal, S.1
  • 65
    • 0031105739 scopus 로고    scopus 로고
    • Introduction neural networks in remote sensing
    • Atkinson, P.M.; Tatnall, A.R. Introduction neural networks in remote sensing. Int. J. Remote Sens. 1997, 18, 699-709.
    • (1997) Int. J. Remote Sens. , vol.18 , pp. 699-709
    • Atkinson, P.M.1    Tatnall, A.R.2
  • 66
    • 84896701487 scopus 로고    scopus 로고
    • Dynamic artificial neural networks with affective systems
    • Schuman, C.D.; Birdwell, J.D. Dynamic artificial neural networks with affective systems. PLoS ONE 2013, 8, e80455.
    • (2013) PLoS ONE. , vol.8
    • Schuman, C.D.1    Birdwell, J.D.2
  • 67
    • 0033225940 scopus 로고    scopus 로고
    • A neural network approach to radiometric sensing of land surface parameters
    • Liou, Y.-A.; Tzeng, Y.C.; Chen, K.S. A neural network approach to radiometric sensing of land surface parameters. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2718-2724.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , pp. 2718-2724
    • Liou, Y.-A.1    Tzeng, Y.C.2    Chen, K.S.3
  • 68
    • 0035446304 scopus 로고    scopus 로고
    • Retrieving soil moisture from simulated brightness temperatures by a neural network
    • Liou, Y.-A.; Liu, S.-F.; Wang, W.-J. Retrieving soil moisture from simulated brightness temperatures by a neural network. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1662-1673.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , pp. 1662-1673
    • Liou, Y.-A.1    Liu, S.-F.2    Wang, W.-J.3
  • 69
    • 33947591833 scopus 로고    scopus 로고
    • A survey of image classification methods and techniques for improving classification performance
    • Lu, D.; Weng, Q. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 2007, 28, 823-870.
    • (2007) Int. J. Remote Sens. , vol.28 , pp. 823-870
    • Lu, D.1    Weng, Q.2
  • 70
    • 37549004391 scopus 로고    scopus 로고
    • Multispectral landuse classification using neural networks and support vector machines: One or the other, or both? Int
    • Dixon, B.; Candade, N. Multispectral landuse classification using neural networks and support vector machines: One or the other, or both? Int. J. Remote Sens. 2008, 29, 1185-1206.
    • (2008) J. Remote Sens. , vol.29 , pp. 1185-1206
    • Dixon, B.1    Candade, N.2
  • 71
    • 79151474442 scopus 로고    scopus 로고
    • Multiple regression, ANN (RBF, MLP) and ANFIS models for prediction of swell potential of clayey soils
    • Yilmaz, I.; Kaynar, O. Multiple regression, ANN (RBF, MLP) and ANFIS models for prediction of swell potential of clayey soils. Expert Syst. Appl. 2011, 38, 5958-5966.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 5958-5966
    • Yilmaz, I.1    Kaynar, O.2
  • 72
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • Moody, J.; Darken, C.J. Fast learning in networks of locally-tuned processing units. Neural Comput. 1989, 1, 281-294.
    • (1989) Neural Comput. , vol.1 , pp. 281-294
    • Moody, J.1    Darken, C.J.2
  • 73
    • 84930043358 scopus 로고    scopus 로고
    • Performance analysis of radial basis function networks and multi-layer perceptron networks in modelling urban change: A case study
    • Shafizadeh-Moghadam, H.; Hagenauer, J.; Farajzadeh, M.; Helbich, M. Performance analysis of radial basis function networks and multi-layer perceptron networks in modelling urban change: A case study. Int. J. Geogr. Inf. Sci. 2015, 29, 606-623.
    • (2015) Int. J. Geogr. Inf. Sci. , vol.29 , pp. 606-623
    • Shafizadeh-Moghadam, H.1    Hagenauer, J.2    Farajzadeh, M.3    Helbich, M.4
  • 74
    • 84891938317 scopus 로고    scopus 로고
    • Evaluation of stiffened end-plate moment connection through optimized artificial neural network
    • Ghassemieh, M.; Nasseri, M. Evaluation of stiffened end-plate moment connection through optimized artificial neural network. J. Softw. Eng. Appl. 2012, 5, 156-167.
    • (2012) J. Softw. Eng. Appl. , vol.5 , pp. 156-167
    • Ghassemieh, M.1    Nasseri, M.2
  • 75
    • 0037138473 scopus 로고    scopus 로고
    • An assessment of support vector machines for land cover classification
    • Huang, C.; Davis, L.S.; Townshend, J.R.G. An assessment of support vector machines for land cover classification. Int. J. Remote Sens. 2002, 23, 725-749.
    • (2002) Int. J. Remote Sens. , vol.23 , pp. 725-749
    • Huang, C.1    Davis, L.S.2    Townshend, J.R.G.3
  • 76
    • 85084252932 scopus 로고    scopus 로고
    • Semiautomatic approach for land cover classification: A remote sensing study for arid climate in Southeastern Tunisia
    • Bouaziz, M.; Eisold, S.; Guermazi, E. Semiautomatic approach for land cover classification: A remote sensing study for arid climate in Southeastern Tunisia. Euro Mediterr. J. Environ. Integr. 2017, 2, 24.
    • (2017) Euro Mediterr. J. Environ. Integr. , vol.2 , pp. 24
    • Bouaziz, M.1    Eisold, S.2    Guermazi, E.3
  • 77
    • 84865656808 scopus 로고    scopus 로고
    • Selection of classification techniques for land use/land cover change investigation
    • Srivastava, P.K.; Han, D.; Rico-Ramirez, M.A.; Bray, M.; Islam, T. Selection of classification techniques for land use/land cover change investigation. Adv. Space Res. 2012, 50, 1250-1265.
    • (2012) Adv. Space Res. , vol.50 , pp. 1250-1265
    • Srivastava, P.K.1    Han, D.2    Rico-Ramirez, M.A.3    Bray, M.4    Islam, T.5
  • 78
    • 85051525322 scopus 로고    scopus 로고
    • Support vector machines for classification
    • Apress: Berkeley, CA, USA
    • Awad, M.; Khanna, R. Support vector machines for classification. In Efficient Learning Machines; Apress: Berkeley, CA, USA, 2015; pp. 39-66.
    • (2015) In Efficient Learning Machines , pp. 39-66
    • Awad, M.1    Khanna, R.2
  • 79
    • 57649140412 scopus 로고    scopus 로고
    • Multiclass and binary SVM classification: Implications for training and classification users
    • Mathur, A.; Foody, G.M. Multiclass and binary SVM classification: Implications for training and classification users. IEEE Geosci. Remote Sens. Lett. 2008, 5, 241-245.
    • (2008) IEEE Geosci. Remote Sens. Lett. , vol.5 , pp. 241-245
    • Mathur, A.1    Foody, G.M.2
  • 80
    • 0032029672 scopus 로고    scopus 로고
    • Fuzzy ARTMAP supervised classification of multi-spectral remotely-sensed images
    • Mannan, B.; Roy, J.; Ray, A.K. Fuzzy ARTMAP supervised classification of multi-spectral remotely-sensed images. Int. J. Remote Sens. 1998, 19, 767-774.
    • (1998) Int. J. Remote Sens. , vol.19 , pp. 767-774
    • Mannan, B.1    Roy, J.2    Ray, A.K.3
  • 81
    • 84889984651 scopus 로고    scopus 로고
    • Fuzzy ARTMAP-A neural classifier for multispectral image classification
    • Springer: Berlin/Heidelberg, Germany
    • Gopal, S. Fuzzy ARTMAP-A neural classifier for multispectral image classification. In Spatial Analysis and GeoComputation; Springer: Berlin/Heidelberg, Germany, 2006; pp. 209-237.
    • (2006) In Spatial Analysis and GeoComputation , pp. 209-237
    • Gopal, S.1
  • 82
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. Random forests. Mach. Learn. 2001, 45, 5-32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 83
    • 85063997428 scopus 로고    scopus 로고
    • Spatio-temporal patterns of land use/land cover change in the heterogeneous coastal region of Bangladesh between 1990 and 2017
    • Abdullah, A.Y.M.; Masrur, A.; Adnan, M.S.G.; Baky, M.; Al, A.; Hassan, Q.K.; Dewan, A. Spatio-temporal patterns of land use/land cover change in the heterogeneous coastal region of Bangladesh between 1990 and 2017. Remote Sens. 2019, 11, 790.
    • (2019) Remote Sens. , vol.11 , pp. 790
    • Abdullah, A.Y.M.1    Masrur, A.2    Adnan, M.S.G.3    Baky, M.4    Al, A.5    Hassan, Q.K.6    Dewan, A.7
  • 84
    • 0345040873 scopus 로고    scopus 로고
    • Classification and Regression by randomForest
    • Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18-22.
    • (2002) R News , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 85
    • 84942511299 scopus 로고    scopus 로고
    • Flood mapping based on multiple endmember spectral mixture analysis and random forest classifier-The case of Yuyao, China
    • Feng, Q.; Gong, J.; Liu, J.; Li, Y. Flood mapping based on multiple endmember spectral mixture analysis and random forest classifier-The case of Yuyao, China. Remote Sens. 2015, 7, 12539-12562.
    • (2015) Remote Sens. , vol.7 , pp. 12539-12562
    • Feng, Q.1    Gong, J.2    Liu, J.3    Li, Y.4
  • 86
    • 84864144748 scopus 로고    scopus 로고
    • Class-Specific Mahalanobis Distance Metric Learning for Biological Image Classification
    • ICIAR 2012, Aveiro, Portugal, 25-27 June 2012; Campilho, A., Kamel, M., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany,
    • Mohan, B.S.S.; Sekhar, C.C. Class-Specific Mahalanobis Distance Metric Learning for Biological Image Classification. In Image Analysis and Recognition-9th International Conference, ICIAR 2012, Aveiro, Portugal, 25-27 June 2012; Campilho, A., Kamel, M., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7325, pp. 240-248.
    • (2012) In Image Analysis and Recognition-9th International Conference , vol.7325 , pp. 240-248
    • Mohan, B.S.S.1    Sekhar, C.C.2
  • 87
    • 77955527583 scopus 로고    scopus 로고
    • A Comparison of Spectral Angle Mapper and Artificial Neural Network Classifiers Combined with Landsat TM Imagery Analysis for Obtaining Burnt Area Mapping
    • Petropoulos, G.P.; Vadrevu, K.P.; Xanthopoulos, G.; Karantounias, G.; Scholze, M. A Comparison of Spectral Angle Mapper and Artificial Neural Network Classifiers Combined with Landsat TM Imagery Analysis for Obtaining Burnt Area Mapping. Sensors 2010, 10, 1967-1985.
    • (2010) Sensors , vol.10 , pp. 1967-1985
    • Petropoulos, G.P.1    Vadrevu, K.P.2    Xanthopoulos, G.3    Karantounias, G.4    Scholze, M.5
  • 88
    • 85015302475 scopus 로고    scopus 로고
    • Object-Based Urban Tree Species Classification Using Bi-TemporalWorldView-2 and WorldView-3 Images
    • Li, D.; Ke, Y.; Gong, H.; Li, X. Object-Based Urban Tree Species Classification Using Bi-TemporalWorldView-2 and WorldView-3 Images. Remote Sens. 2015, 7, 16917-16937.
    • (2015) Remote Sens. , vol.7 , pp. 16917-16937
    • Li, D.1    Ke, Y.2    Gong, H.3    Li, X.4
  • 89
    • 85071546205 scopus 로고    scopus 로고
    • Auxiliary datasets improve accuracy of object-based land use/land cover classification in heterogeneous savanna landscapes
    • Hurskainen, P.; Adhikari, H.; Siljander, M.; Pellikka, P.K.E.; Hemp, A. Auxiliary datasets improve accuracy of object-based land use/land cover classification in heterogeneous savanna landscapes. Remote Sens. Environ. 2019, 233, 111354.
    • (2019) Remote Sens. Environ. , vol.233 , pp. 111354
    • Hurskainen, P.1    Adhikari, H.2    Siljander, M.3    Pellikka, P.K.E.4    Hemp, A.5
  • 90
    • 0027091362 scopus 로고
    • Comparing global vegetation maps with the Kappa statistic
    • Monserud, R.A.; Leemans, R. Comparing global vegetation maps with the Kappa statistic. Ecol. Model. 1992, 62, 275-293.
    • (1992) Ecol. Model. , vol.62 , pp. 275-293
    • Monserud, R.A.1    Leemans, R.2
  • 91
    • 85071386432 scopus 로고    scopus 로고
    • Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data
    • Abdi, A.M. Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data. GISci. Remote Sens. 2019, 1-20.
    • (2019) GISci. Remote Sens. , pp. 1-20
    • Abdi, A.M.1
  • 92
    • 1942439885 scopus 로고    scopus 로고
    • Comparison of maximum likelihood classification method with supervised artificial neural network algorithms for land use activities
    • Erbek, F.S.; Özkan, C.; Taberner, M. Comparison of maximum likelihood classification method with supervised artificial neural network algorithms for land use activities. Int. J. Remote Sens. 2004, 25, 1733-1748.
    • (2004) Int. J. Remote Sens. , vol.25 , pp. 1733-1748
    • Erbek, F.S.1    Özkan, C.2    Taberner, M.3
  • 93
    • 85039732569 scopus 로고    scopus 로고
    • Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery
    • Noi, P.T.; Kappas, M. Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery. Sensors 2018, 18, 18.
    • (2018) Sensors. , vol.18 , pp. 18
    • Noi, P.T.1    Kappas, M.2
  • 94
    • 84899558274 scopus 로고    scopus 로고
    • Evaluation of different machine learning methods for land cover mapping of a Mediterranean area using multi-seasonal Landsat images and Digital Terrain Models
    • Rodriguez-Galiano, V.F.; Chica-Rivas, M. Evaluation of different machine learning methods for land cover mapping of a Mediterranean area using multi-seasonal Landsat images and Digital Terrain Models. Int. J. Digit. Earth 2014, 7, 492-509.
    • (2014) Int. J. Digit. Earth , vol.7 , pp. 492-509
    • Rodriguez-Galiano, V.F.1    Chica-Rivas, M.2
  • 95
    • 40349114181 scopus 로고    scopus 로고
    • Harshness in image classification accuracy assessment
    • Foody, G.M. Harshness in image classification accuracy assessment. Int. J. Remote Sens. 2008, 29, 3137-3158.
    • (2008) Int. J. Remote Sens. , vol.29 , pp. 3137-3158
    • Foody, G.M.1
  • 96
    • 85037547841 scopus 로고    scopus 로고
    • Accuracy assessment of land use/land cover classification using remote sensing and GIS
    • Rwanga, S.S.; Ndambuki, J.M. Accuracy assessment of land use/land cover classification using remote sensing and GIS. Int. J. Geosci. 2017, 8, 611.
    • (2017) Int. J. Geosci. , vol.8 , pp. 611
    • Rwanga, S.S.1    Ndambuki, J.M.2
  • 97
    • 85008474207 scopus 로고    scopus 로고
    • Land use classification and change detection by using multi-temporal remotely sensed imagery: The case of Chunati wildlife sanctuary, Bangladesh
    • Islam, K.; Jashimuddin, M.; Nath, B.; Nath, T.K. Land use classification and change detection by using multi-temporal remotely sensed imagery: The case of Chunati wildlife sanctuary, Bangladesh. Egypt. J. Remote Sens. Space Sci. 2018, 21, 37-47.
    • (2018) Egypt. J. Remote Sens. Space Sci. , vol.21 , pp. 37-47
    • Islam, K.1    Jashimuddin, M.2    Nath, B.3    Nath, T.K.4
  • 98
    • 85030628667 scopus 로고    scopus 로고
    • Assessing the accuracy of multi-temporal built-up land layers across rural-urban trajectories in the United States
    • Leyk, S.; Uhl, J.H.; Balk, D.; Jones, B. Assessing the accuracy of multi-temporal built-up land layers across rural-urban trajectories in the United States. Remote Sens. Environ. 2018, 204, 898-917.
    • (2018) Remote Sens. Environ. , vol.204 , pp. 898-917
    • Leyk, S.1    Uhl, J.H.2    Balk, D.3    Jones, B.4
  • 100
    • 84920812571 scopus 로고    scopus 로고
    • Comparing machine learning classifiers for object-based land cover classification using very high-resolution imagery
    • Qian, Y.; Zhou, W.; Yan, J.; Li, W.; Han, L. Comparing machine learning classifiers for object-based land cover classification using very high-resolution imagery. Remote Sens. 2015, 7, 153-168.
    • (2015) Remote Sens. , vol.7 , pp. 153-168
    • Qian, Y.1    Zhou, W.2    Yan, J.3    Li, W.4    Han, L.5
  • 101
    • 78649797017 scopus 로고    scopus 로고
    • A comparison of classification techniques to support land cover and land use analysis in tropical coastal zones
    • Szuster, B.W.; Chen, Q.; Borger, M. A comparison of classification techniques to support land cover and land use analysis in tropical coastal zones. Appl. Geogr. 2011, 31, 525-532.
    • (2011) Appl. Geogr. , vol.31 , pp. 525-532
    • Szuster, B.W.1    Chen, Q.2    Borger, M.3
  • 102
    • 84866847148 scopus 로고    scopus 로고
    • An evaluation of bagging, boosting, and random forests for land-cover classification in Cape Cod, Massachusetts, USA
    • Ghimire, B.; Rogan, J.; Galiano, V.R.; Panday, P.; Neeti, N. An evaluation of bagging, boosting, and random forests for land-cover classification in Cape Cod, Massachusetts, USA. GIScience Remote Sens. 2012, 49, 623-643.
    • (2012) GIScience Remote Sens. , vol.49 , pp. 623-643
    • Ghimire, B.1    Rogan, J.2    Galiano, V.R.3    Panday, P.4    Neeti, N.5
  • 103
    • 75449091147 scopus 로고    scopus 로고
    • Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms
    • Otukei, J.R.; Blaschke, T. Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, S27-S31.
    • (2010) Int. J. Appl. Earth Obs. Geoinf.. , vol.12 , pp. S27-S31
    • Otukei, J.R.1    Blaschke, T.2
  • 104
    • 84899840702 scopus 로고    scopus 로고
    • Comparative Assessment of Supervised Classifiers for Land Use-Land Cover Classification in a Tropical Region Using Time-Series PALSAR Mosaic Data
    • Shiraishi, T.; Motohka, T.; Thapa, R.B.; Watanabe, M.; Shimada, M. Comparative Assessment of Supervised Classifiers for Land Use-Land Cover Classification in a Tropical Region Using Time-Series PALSAR Mosaic Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2014, 7, 1186-1199.
    • (2014) IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. , vol.7 , pp. 1186-1199
    • Shiraishi, T.1    Motohka, T.2    Thapa, R.B.3    Watanabe, M.4    Shimada, M.5
  • 105
    • 85022191954 scopus 로고    scopus 로고
    • Comparison of support vector machine, random forest and neural network classifiers for tree species classification on airborne hyperspectral APEX images
    • Raczko, E.; Zagajewski, B. Comparison of support vector machine, random forest and neural network classifiers for tree species classification on airborne hyperspectral APEX images. Eur. J. Remote Sens. 2017, 50, 144-154.
    • (2017) Eur. J. Remote Sens. , vol.50 , pp. 144-154
    • Raczko, E.1    Zagajewski, B.2
  • 106
    • 84906539486 scopus 로고    scopus 로고
    • Comparison of two Classification methods (MLC and SVM) to extract land use and land cover in Johor Malaysia.7th IGRSM International Remote Sensing & GIS Conference and Exhibition, 22-23 April 2014, Kuala Lumpur, Malaysia
    • Deilmai, B.R.; Ahmad, B.B.; Zabihi, H. Comparison of two Classification methods (MLC and SVM) to extract land use and land cover in Johor Malaysia.7th IGRSM International Remote Sensing & GIS Conference and Exhibition, 22-23 April 2014, Kuala Lumpur, Malaysia. IOP Conf. Ser. Earth Environ. Sci. 2014, 20, 012052.
    • (2014) IOP Conf. Ser. Earth Environ. Sci. , vol.20 , pp. 012052
    • Deilmai, B.R.1    Ahmad, B.B.2    Zabihi, H.3
  • 107
    • 85040109460 scopus 로고    scopus 로고
    • Fuzziness-based active learning framework to enhance hyperspectral image classification performance for discriminative and generative classifiers
    • Ahmad, M.; Protasov, S.; Khan, A.M.; Hussain, R.; Khattak, A.M.; Khan, W.A. Fuzziness-based active learning framework to enhance hyperspectral image classification performance for discriminative and generative classifiers. PLoS ONE 2018, 13, e0188996.
    • (2018) PLoS ONE. , vol.13
    • Ahmad, M.1    Protasov, S.2    Khan, A.M.3    Hussain, R.4    Khattak, A.M.5    Khan, W.A.6
  • 108
    • 84963998074 scopus 로고    scopus 로고
    • Comparisons of using Random Forest and Maximum Likelihood Classifiers withWorldview-2 imagery for classifying Crop Types
    • Quezon City, Philippines, 24-28 October
    • Lee, R.Y.; Ou, D.Y.; Shiu, Y.S.; Lei, T.C. Comparisons of using Random Forest and Maximum Likelihood Classifiers withWorldview-2 imagery for classifying Crop Types. In Proceedings of the 36th Asian Conference Remote Sensing Foster ACRS, Quezon City, Philippines, 24-28 October 2015.
    • (2015) In Proceedings of the 36th Asian Conference Remote Sensing Foster ACRS
    • Lee, R.Y.1    Ou, D.Y.2    Shiu, Y.S.3    Lei, T.C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.