메뉴 건너뛰기




Volumn 144, Issue , 2018, Pages 325-340

A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform

Author keywords

Australia; China; Cropland mapping; Google Earth Engine; Landsat; Machine learning algorithm; Random forest

Indexed keywords

CLOUD COMPUTING; COMPUTING POWER; CROPS; DATA HANDLING; DECISION TREES; ENGINES; KNOWLEDGE BASED SYSTEMS; LEARNING ALGORITHMS; MACHINE LEARNING; MAPPING; PRODUCTIVITY; SAMPLING;

EID: 85051136400     PISSN: 09242716     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.isprsjprs.2018.07.017     Document Type: Article
Times cited : (395)

References (93)
  • 1
    • 85166823934 scopus 로고    scopus 로고
    • Australian Crop Report Series, Australian Bureau of Agricultural and Resource Economics and Sciences, Canberra, February. (accessed March 2016).
    • ABARES, 2016. Australian Crop Report Series, Australian Bureau of Agricultural and Resource Economics and Sciences, Canberra, February. (accessed March 2016).
    • (2016)
  • 2
    • 84959419610 scopus 로고    scopus 로고
    • GlobeLand30 as an alternative fine-scale global land cover map: challenges, possibilities, and implications for developing countries
    • Arsanjani, J.J., Tayyebi, A., Vaz, E., GlobeLand30 as an alternative fine-scale global land cover map: challenges, possibilities, and implications for developing countries. Habitat Int. 55 (2016), 25–31.
    • (2016) Habitat Int. , vol.55 , pp. 25-31
    • Arsanjani, J.J.1    Tayyebi, A.2    Vaz, E.3
  • 3
    • 84961834117 scopus 로고    scopus 로고
    • Random forest in remote sensing: a review of applications and future directions
    • Belgiu, M., Drăguţ L., Random forest in remote sensing: a review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 114 (2016), 24–31.
    • (2016) ISPRS J. Photogramm. Remote Sens. , vol.114 , pp. 24-31
    • Belgiu, M.1    Drăguţ, L.2
  • 4
    • 33749472628 scopus 로고    scopus 로고
    • Irrigated area mapping in heterogeneous landscapes with MODIS time series, ground truth and census data, Krishna Basin, India
    • Biggs, T., Thenkabail, P., Gumma, M., Scott, C., Parthasaradhi, G., Turral, H., Irrigated area mapping in heterogeneous landscapes with MODIS time series, ground truth and census data, Krishna Basin, India. Int. J. Remote Sens. 27 (2006), 4245–4426.
    • (2006) Int. J. Remote Sens. , vol.27 , pp. 4245-4426
    • Biggs, T.1    Thenkabail, P.2    Gumma, M.3    Scott, C.4    Parthasaradhi, G.5    Turral, H.6
  • 6
    • 79960831514 scopus 로고    scopus 로고
    • Monitoring US agriculture: the US department of agriculture, national agricultural statistics service, cropland data layer program
    • Boryan, C., Yang, Z., Mueller, R., Craig, M., Monitoring US agriculture: the US department of agriculture, national agricultural statistics service, cropland data layer program. Geocarto Int. 26:5 (2011), 341–358.
    • (2011) Geocarto Int. , vol.26 , Issue.5 , pp. 341-358
    • Boryan, C.1    Yang, Z.2    Mueller, R.3    Craig, M.4
  • 7
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L., Random forests. Mach. Learn. 45 (2001), 5–32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 9
    • 43949125818 scopus 로고    scopus 로고
    • Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery
    • Chan, J.C.W., Paelinckx, D., Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sens. Environ. 112:6 (2008), 2999–3011.
    • (2008) Remote Sens. Environ. , vol.112 , Issue.6 , pp. 2999-3011
    • Chan, J.C.W.1    Paelinckx, D.2
  • 10
    • 63949083045 scopus 로고    scopus 로고
    • Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors
    • Chander, G., Markham, B.L., Helder, D.L., Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 113 (2009), 893–903.
    • (2009) Remote Sens. Environ. , vol.113 , pp. 893-903
    • Chander, G.1    Markham, B.L.2    Helder, D.L.3
  • 11
    • 85166844151 scopus 로고    scopus 로고
    • Using Random Forest to Learn Imbalanced Data, Technical Report 666.. University of California, Berkeley.
    • Chen, C., Liaw, A., Breiman, L., 2004. Using Random Forest to Learn Imbalanced Data, Technical Report 666.. University of California, Berkeley.
    • (2004)
    • Chen, C.1    Liaw, A.2    Breiman, L.3
  • 12
    • 85049633866 scopus 로고    scopus 로고
    • Stand age estimation of rubber (Hevea brasiliensis) plantations using an integrated pixel-and object-based tree growth model and annual Landsat time series
    • Chen, G., Thill, J.C., Anantsuksomsri, S., Tontisirin, N., Tao, R., Stand age estimation of rubber (Hevea brasiliensis) plantations using an integrated pixel-and object-based tree growth model and annual Landsat time series. ISPRS J. Photogramm. Remote Sens. 144 (2018), 94–104.
    • (2018) ISPRS J. Photogramm. Remote Sens. , vol.144 , pp. 94-104
    • Chen, G.1    Thill, J.C.2    Anantsuksomsri, S.3    Tontisirin, N.4    Tao, R.5
  • 14
    • 2942621978 scopus 로고    scopus 로고
    • Landsat's role in ecological applications of remote sensing
    • Cohen, W.B., Goward, S.N., Landsat's role in ecological applications of remote sensing. Bioscience 54 (2004), 535–545.
    • (2004) Bioscience , vol.54 , pp. 535-545
    • Cohen, W.B.1    Goward, S.N.2
  • 16
    • 0026278621 scopus 로고
    • A review of assessing the accuracy of classifications of remotely sensed data
    • Congalton, R.G., A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 37 (1991), 35–46.
    • (1991) Remote Sens. Environ. , vol.37 , pp. 35-46
    • Congalton, R.G.1
  • 17
    • 85026196433 scopus 로고    scopus 로고
    • 19 accuracy and error analysis of global and local maps: lessons learned and future considerations
    • Congalton, R.G., 19 accuracy and error analysis of global and local maps: lessons learned and future considerations. Remote Sens. Glob. Croplands Food Secur., 2009, 441.
    • (2009) Remote Sens. Glob. Croplands Food Secur. , pp. 441
    • Congalton, R.G.1
  • 18
    • 84871294336 scopus 로고    scopus 로고
    • Assessing the Accuracy of Remotely Sensed Data: Principles and Practices
    • CRC Press
    • Congalton, R.G., Green, K., Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. 2008, CRC Press.
    • (2008)
    • Congalton, R.G.1    Green, K.2
  • 19
    • 85051623760 scopus 로고    scopus 로고
    • NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-support Analysis Data (GFSAD) Cropland Extent 2015 Validation Global 30 m V001 [Data set]. NASA EOSDIS Land Processes DAAC.
    • Congalton, G., R., Yadav, K., McDonnell, K., Poehnelt, J., Stevens, B., Gumma, K.M., Teluguntla, P., Thenkabail, P.S., 2017. NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-support Analysis Data (GFSAD) Cropland Extent 2015 Validation Global 30 m V001 [Data set]. NASA EOSDIS Land Processes DAAC. http://doi.org/10.5067/MEaSUREs/GFSAD/GFSAD30VAL.001.
    • (2017)
    • Congalton, G.1    Yadav, R.K.2    McDonnell, K.3    Poehnelt, J.4    Stevens, B.5    Gumma, K.M.6    Teluguntla, P.7    Thenkabail, P.S.8
  • 21
    • 0034476942 scopus 로고    scopus 로고
    • Multiple criteria for evaluating machine learning algorithms for land cover classification from satellite data
    • DeFries, R., Chan, J.C.-W., Multiple criteria for evaluating machine learning algorithms for land cover classification from satellite data. Remote Sens. Environ. 74 (2000), 503–515.
    • (2000) Remote Sens. Environ. , vol.74 , pp. 503-515
    • DeFries, R.1    Chan, J.C.-W.2
  • 23
    • 84455200427 scopus 로고    scopus 로고
    • A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery
    • Duro, D.C., Franklin, S.E., Dubé M.G., A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens. Environ. 118 (2012), 259–272.
    • (2012) Remote Sens. Environ. , vol.118 , pp. 259-272
    • Duro, D.C.1    Franklin, S.E.2    Dubé, M.G.3
  • 24
    • 85166860081 scopus 로고    scopus 로고
    • Multi-source Geospatial Data Analysis with Google Earth Engine, Fall Meeting 2014, abstract #IN53E-05. American Geophysical Union.
    • Erickson, T., 2014. Multi-source Geospatial Data Analysis with Google Earth Engine, Fall Meeting 2014, abstract #IN53E-05. American Geophysical Union.
    • (2014)
    • Erickson, T.1
  • 25
    • 85166848468 scopus 로고    scopus 로고
    • Global Agroecological Zones Assessment: Methodology and Results (IIASA Interim Report IR-00-064).
    • Fischer, G., van Velthuizen, H., Nachtergaele, F.O., 2000. Global Agroecological Zones Assessment: Methodology and Results (IIASA Interim Report IR-00-064).
    • (2000)
    • Fischer, G.1    van Velthuizen, H.2    Nachtergaele, F.O.3
  • 29
    • 76349096348 scopus 로고    scopus 로고
    • Declining global per capita agricultural production and warming oceans threaten food security
    • Funk, C.C., Brown, M.E., Declining global per capita agricultural production and warming oceans threaten food security. Food Secur. 1 (2009), 271–289.
    • (2009) Food Secur. , vol.1 , pp. 271-289
    • Funk, C.C.1    Brown, M.E.2
  • 31
    • 84872359932 scopus 로고    scopus 로고
    • Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data
    • Gong, P., Wang, J., Yu, L., Zhao, Y., Zhao, Y., Liang, L., Niu, Z., Huang, X., Fu, H., Liu, S., Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 34 (2013), 2607–2654.
    • (2013) Int. J. Remote Sens. , vol.34 , pp. 2607-2654
    • Gong, P.1    Wang, J.2    Yu, L.3    Zhao, Y.4    Zhao, Y.5    Liang, L.6    Niu, Z.7    Huang, X.8    Fu, H.9    Liu, S.10
  • 33
    • 80054087663 scopus 로고    scopus 로고
    • Mapping rice areas of South Asia using MODIS multitemporal data
    • 053547-053547-053526
    • Gumma, M.K., Nelson, A., Thenkabail, P.S., Singh, A.N., Mapping rice areas of South Asia using MODIS multitemporal data. J. Appl. Remote Sens., 5, 2011 053547-053547-053526.
    • (2011) J. Appl. Remote Sens. , vol.5
    • Gumma, M.K.1    Nelson, A.2    Thenkabail, P.S.3    Singh, A.N.4
  • 34
    • 84965031268 scopus 로고    scopus 로고
    • Mapping rice-fallow cropland areas for short-season grain legumes intensification in South Asia using MODIS 250 m time-series data
    • Gumma, M.K., Thenkabail, P.S., Teluguntla, P., Rao, M.N., Mohammed, I.A., Whitbread, A.M., Mapping rice-fallow cropland areas for short-season grain legumes intensification in South Asia using MODIS 250 m time-series data. Int. J. Digital Earth 9 (2016), 981–1003.
    • (2016) Int. J. Digital Earth , vol.9 , pp. 981-1003
    • Gumma, M.K.1    Thenkabail, P.S.2    Teluguntla, P.3    Rao, M.N.4    Mohammed, I.A.5    Whitbread, A.M.6
  • 35
    • 84896308273 scopus 로고    scopus 로고
    • Mapping seasonal rice cropland extent and area in the high cropping intensity environment of Bangladesh using MODIS 500 m data for the year 2010
    • Gumma, M.K., Thenkabail, P.S., Maunahan, A., Islam, S., Nelson, A., Mapping seasonal rice cropland extent and area in the high cropping intensity environment of Bangladesh using MODIS 500 m data for the year 2010. ISPRS J. Photogramm. Remote Sens. 91 (2014), 98–113.
    • (2014) ISPRS J. Photogramm. Remote Sens. , vol.91 , pp. 98-113
    • Gumma, M.K.1    Thenkabail, P.S.2    Maunahan, A.3    Islam, S.4    Nelson, A.5
  • 38
    • 84860271348 scopus 로고    scopus 로고
    • CropScape: a Web service based application for exploring and disseminating US conterminous geospatial cropland data products for decision support
    • Han, W., Yang, Z., Di, L., Mueller, R., CropScape: a Web service based application for exploring and disseminating US conterminous geospatial cropland data products for decision support. Comput. Electron. Agric. 84 (2012), 111–123.
    • (2012) Comput. Electron. Agric. , vol.84 , pp. 111-123
    • Han, W.1    Yang, Z.2    Di, L.3    Mueller, R.4
  • 40
    • 84865406893 scopus 로고    scopus 로고
    • The next Landsat satellite: the Landsat data continuity mission
    • Irons, J.R., Dwyer, J.L., Barsi, J.A., The next Landsat satellite: the Landsat data continuity mission. Remote Sens. Environ. 122 (2012), 11–21.
    • (2012) Remote Sens. Environ. , vol.122 , pp. 11-21
    • Irons, J.R.1    Dwyer, J.L.2    Barsi, J.A.3
  • 42
    • 85048975449 scopus 로고    scopus 로고
    • Irrigation history estimation using multitemporal Landsat satellite Images: application to an intensive groundwater irrigated agricultural watershed in India
    • Kumar, A., Hubert-Moy, L., Buvaneshwari, S., Sekhar, M., Ruiz, L., Bandyopadhyay, S., Corgne, S., Irrigation history estimation using multitemporal Landsat satellite Images: application to an intensive groundwater irrigated agricultural watershed in India. Remote Sens., 10(6), 2018, 893.
    • (2018) Remote Sens. , vol.10 , Issue.6 , pp. 893
    • Kumar, A.1    Hubert-Moy, L.2    Buvaneshwari, S.3    Sekhar, M.4    Ruiz, L.5    Bandyopadhyay, S.6    Corgne, S.7
  • 43
    • 85166848461 scopus 로고    scopus 로고
    • Landsat 8 OLI and TIRS. Available online: (accessed on 4 December 2017).
    • Landsat 8 OLI and TIRS. Available online: https://www.lta.cr.usgs.gov/L8 (accessed on 4 December 2017).
  • 44
    • 31344453556 scopus 로고    scopus 로고
    • Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (RandomForest)
    • Lawrence, R.L., Wood, S.D., Sheley, R.L., Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (RandomForest). Remote Sens. Environ. 100 (2006), 356–362.
    • (2006) Remote Sens. Environ. , vol.100 , pp. 356-362
    • Lawrence, R.L.1    Wood, S.D.2    Sheley, R.L.3
  • 45
    • 84952795294 scopus 로고    scopus 로고
    • Evaluation of the consistency of MODIS land cover product (MCD12Q1) based on Chinese 30 m globeland30 datasets: a case study in Anhui Province, China
    • Liang, D., Zuo, Y., Huang, L., Zhao, J., Teng, L., Yang, F., Evaluation of the consistency of MODIS land cover product (MCD12Q1) based on Chinese 30 m globeland30 datasets: a case study in Anhui Province, China. ISPRS Int. J. Geo-Inf. 4 (2015), 2519–2541.
    • (2015) ISPRS Int. J. Geo-Inf. , vol.4 , pp. 2519-2541
    • Liang, D.1    Zuo, Y.2    Huang, L.3    Zhao, J.4    Teng, L.5    Yang, F.6
  • 46
    • 0034655807 scopus 로고    scopus 로고
    • Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data
    • Loveland, T., Reed, B., Brown, J., Ohlen, D., Zhu, Z., Yang, L., Merchant, J., Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 21 (2000), 1303–1330.
    • (2000) Int. J. Remote Sens. , vol.21 , pp. 1303-1330
    • Loveland, T.1    Reed, B.2    Brown, J.3    Ohlen, D.4    Zhu, Z.5    Yang, L.6    Merchant, J.7
  • 49
    • 84940536749 scopus 로고    scopus 로고
    • Advantage of hyperspectral EO-1 Hyperion over multispectral IKONOS, GeoEye-1, WorldView-2, Landsat ETM+, and MODIS vegetation indices in crop biomass estimation
    • Marshall, M., Thenkabail, P., Advantage of hyperspectral EO-1 Hyperion over multispectral IKONOS, GeoEye-1, WorldView-2, Landsat ETM+, and MODIS vegetation indices in crop biomass estimation. ISPRS J. Photogramm. Remote Sens. 108 (2015), 205–218.
    • (2015) ISPRS J. Photogramm. Remote Sens. , vol.108 , pp. 205-218
    • Marshall, M.1    Thenkabail, P.2
  • 50
    • 84860403322 scopus 로고    scopus 로고
    • Changes in croplands as a result of large scale mining and the associated impact on food security studied using time-series Landsat images
    • Matejicek, L., Kopackova, V., Changes in croplands as a result of large scale mining and the associated impact on food security studied using time-series Landsat images. Remote Sens. 2:6 (2010), 1463–1480.
    • (2010) Remote Sens. , vol.2 , Issue.6 , pp. 1463-1480
    • Matejicek, L.1    Kopackova, V.2
  • 52
    • 79959669722 scopus 로고    scopus 로고
    • Improved land cover mapping using random forests combined with landsat thematic mapper imagery and ancillary geographic data
    • Na, X., Zhang, S., Li, X., Yu, H., Liu, C., Improved land cover mapping using random forests combined with landsat thematic mapper imagery and ancillary geographic data. Photogramm. Eng. Remote Sens. 76 (2010), 833–840.
    • (2010) Photogramm. Eng. Remote Sens. , vol.76 , pp. 833-840
    • Na, X.1    Zhang, S.2    Li, X.3    Yu, H.4    Liu, C.5
  • 53
    • 85047555300 scopus 로고    scopus 로고
    • Improving the accuracy of remotely sensed irrigated areas using post-classification enhancement through UAV capability
    • Nhamo, L., van Dijk, R., Magidi, J., Wiberg, D., Tshikolomo, K., Improving the accuracy of remotely sensed irrigated areas using post-classification enhancement through UAV capability. Remote Sens., 10(5), 2018, 712.
    • (2018) Remote Sens. , vol.10 , Issue.5 , pp. 712
    • Nhamo, L.1    van Dijk, R.2    Magidi, J.3    Wiberg, D.4    Tshikolomo, K.5
  • 54
    • 48349112954 scopus 로고    scopus 로고
    • A new methodology to map irrigated areas using multi-temporal MODIS and ancillary data: An application example in the continental US
    • Ozdogan, M., Gutman, G., A new methodology to map irrigated areas using multi-temporal MODIS and ancillary data: An application example in the continental US. Remote Sens. Environ. 112:9 (2008), 3520–3537.
    • (2008) Remote Sens. Environ. , vol.112 , Issue.9 , pp. 3520-3537
    • Ozdogan, M.1    Gutman, G.2
  • 55
    • 33745891242 scopus 로고    scopus 로고
    • Resolution dependent errors in remote sensing of cultivated areas
    • Ozdogan, M., Woodcock, C.E., Resolution dependent errors in remote sensing of cultivated areas. Remote Sens. Environ. 103 (2006), 203–217.
    • (2006) Remote Sens. Environ. , vol.103 , pp. 203-217
    • Ozdogan, M.1    Woodcock, C.E.2
  • 58
    • 84992151859 scopus 로고    scopus 로고
    • Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas
    • Pelletier, C., Valero, S., Inglada, J., Champion, N., Dedieu, G., Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas. Remote Sens. Environ. 187 (2016), 156–168.
    • (2016) Remote Sens. Environ. , vol.187 , pp. 156-168
    • Pelletier, C.1    Valero, S.2    Inglada, J.3    Champion, N.4    Dedieu, G.5
  • 59
    • 79953182966 scopus 로고    scopus 로고
    • Object-based crop identification using multiple vegetation indices, textural features and crop phenology
    • Peña-Barragán, J.M., Ngugi, M.K., Plant, R.E., Six, J., Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sens. Environ. 115:6 (2011), 1301–1316.
    • (2011) Remote Sens. Environ. , vol.115 , Issue.6 , pp. 1301-1316
    • Peña-Barragán, J.M.1    Ngugi, M.K.2    Plant, R.E.3    Six, J.4
  • 61
    • 84899858948 scopus 로고    scopus 로고
    • Mapping irrigated areas in Afghanistan over the past decade using MODIS NDVI
    • Pervez, M.S., Budde, M., Rowland, J., Mapping irrigated areas in Afghanistan over the past decade using MODIS NDVI. Remote Sens. Environ. 149 (2014), 155–165.
    • (2014) Remote Sens. Environ. , vol.149 , pp. 155-165
    • Pervez, M.S.1    Budde, M.2    Rowland, J.3
  • 63
    • 77954168912 scopus 로고    scopus 로고
    • MIRCA2000—global monthly irrigated and rainfed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modeling
    • Portmann, F.T., Siebert, S., Döll, P., MIRCA2000—global monthly irrigated and rainfed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modeling. Glob. Biogeochem. Cycles, 24, 2010.
    • (2010) Glob. Biogeochem. Cycles , vol.24
    • Portmann, F.T.1    Siebert, S.2    Döll, P.3
  • 65
    • 84925880595 scopus 로고    scopus 로고
    • Global rain-fed, irrigated, and paddy croplands: a new high resolution map derived from remote sensing, crop inventories and climate data
    • Salmon, J.M., Friedl, M.A., Frolking, S., Wisser, D., Douglas, E.M., Global rain-fed, irrigated, and paddy croplands: a new high resolution map derived from remote sensing, crop inventories and climate data. Int. J. Appl. Earth Observ. Geoinformat. 38 (2015), 321–334.
    • (2015) Int. J. Appl. Earth Observ. Geoinformat. , vol.38 , pp. 321-334
    • Salmon, J.M.1    Friedl, M.A.2    Frolking, S.3    Wisser, D.4    Douglas, E.M.5
  • 66
    • 85008457794 scopus 로고    scopus 로고
    • Subnational distribution of average farm size and smallholder contributions to global food production
    • Samberg, L.H., Gerber, J.S., Ramankutty, N., Herrero, M., West, P.C., Subnational distribution of average farm size and smallholder contributions to global food production. Environ. Res. Lett., 11, 2016, 124010.
    • (2016) Environ. Res. Lett. , vol.11 , pp. 124010
    • Samberg, L.H.1    Gerber, J.S.2    Ramankutty, N.3    Herrero, M.4    West, P.C.5
  • 67
    • 84860601047 scopus 로고    scopus 로고
    • Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points
    • Shao, Y., Lunetta, R.S., Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS J. Photogramm. Remote Sens. 70 (2012), 78–87.
    • (2012) ISPRS J. Photogramm. Remote Sens. , vol.70 , pp. 78-87
    • Shao, Y.1    Lunetta, R.S.2
  • 68
    • 77950311590 scopus 로고    scopus 로고
    • Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation
    • Siebert, S., Döll, P., Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. J. Hydrol. 384 (2010), 198–217.
    • (2010) J. Hydrol. , vol.384 , pp. 198-217
    • Siebert, S.1    Döll, P.2
  • 69
    • 34547673383 scopus 로고    scopus 로고
    • Cost-sensitive boosting for classification of imbalanced data
    • Sun, Y., Kamel, M.S., Wong, A.K., Wang, Y., Cost-sensitive boosting for classification of imbalanced data. Pattern Recogn. 40 (2007), 3358–3378.
    • (2007) Pattern Recogn. , vol.40 , pp. 3358-3378
    • Sun, Y.1    Kamel, M.S.2    Wong, A.K.3    Wang, Y.4
  • 70
    • 84931270718 scopus 로고    scopus 로고
    • Crop classification of upland fields using Random forest of time-series Landsat 7 ETM+ data
    • Tatsumi, K., Yamashiki, Y., Torres, M.A.C., Taipe, C.L.R., Crop classification of upland fields using Random forest of time-series Landsat 7 ETM+ data. Comput. Electron. Agric. 115 (2015), 171–179.
    • (2015) Comput. Electron. Agric. , vol.115 , pp. 171-179
    • Tatsumi, K.1    Yamashiki, Y.2    Torres, M.A.C.3    Taipe, C.L.R.4
  • 71
    • 84937899618 scopus 로고    scopus 로고
    • Mapping flooded rice paddies using time series of MODIS imagery in the Krishna River Basin, India
    • Teluguntla, P., Ryu, D., George, B., Walker, J.P., Malano, H.M., Mapping flooded rice paddies using time series of MODIS imagery in the Krishna River Basin, India. Remote Sens. 7 (2015), 8858–8888.
    • (2015) Remote Sens. , vol.7 , pp. 8858-8888
    • Teluguntla, P.1    Ryu, D.2    George, B.3    Walker, J.P.4    Malano, H.M.5
  • 72
    • 85051140400 scopus 로고    scopus 로고
    • Global Food Security Support Analysis Data at Nominal 1 km (GFSAD1km) Derived from Remote Sensing in Support of Food Security in the Twenty-First Century: current Achievements and Future Possibilities. Land Resources Monitoring, Modeling, and Mapping with Remote Sensing. CRC Press
    • Teluguntla, P., Thenkabail, P.S., Xiong, J., Gumma, M.K., Giri, C., Milesi, C., Ozdogan, M., Congalton, R.G., Tilton, J., Sankey, T.T., 2015b. Global Food Security Support Analysis Data at Nominal 1 km (GFSAD1km) Derived from Remote Sensing in Support of Food Security in the Twenty-First Century: current Achievements and Future Possibilities. Land Resources Monitoring, Modeling, and Mapping with Remote Sensing. CRC Press, pp. 131–159.
    • (2015) , pp. 131-159
    • Teluguntla, P.1    Thenkabail, P.S.2    Xiong, J.3    Gumma, M.K.4    Giri, C.5    Milesi, C.6    Ozdogan, M.7    Congalton, R.G.8    Tilton, J.9    Sankey, T.T.10
  • 73
    • 85008422868 scopus 로고    scopus 로고
    • Spectral matching techniques (SMTs) and automated cropland classification algorithms (ACCAs) for mapping croplands of Australia using MODIS 250-m time-series (2000–2015) data
    • Teluguntla, P., Thenkabail, P.S., Xiong, J., Gumma, M.K., Congalton, R.G., Oliphant, A., Poehnelt, J., Yadav, K., Rao, M., Massey, R., Spectral matching techniques (SMTs) and automated cropland classification algorithms (ACCAs) for mapping croplands of Australia using MODIS 250-m time-series (2000–2015) data. Int. J. Digital Earth, 2017, 1–34.
    • (2017) Int. J. Digital Earth , pp. 1-34
    • Teluguntla, P.1    Thenkabail, P.S.2    Xiong, J.3    Gumma, M.K.4    Congalton, R.G.5    Oliphant, A.6    Poehnelt, J.7    Yadav, K.8    Rao, M.9    Massey, R.10
  • 74
    • 85166877939 scopus 로고    scopus 로고
    • NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-support Analysis Data (GFSAD) Cropland Extent 2015 Australia, New Zealand, China, Mongolia 30 m V001 [Data set]. NASA EOSDIS Land Processes DAAC.
    • Teluguntla, P., Thenkabail, P.S., Xiong, J., Gumma, M.K., G., Congalton, R., Oliphant, J., A., Sankey, T., Poehnelt, J., Yadav, K., Massey, R., Phalke, A., Smith, C., 2017b. NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-support Analysis Data (GFSAD) Cropland Extent 2015 Australia, New Zealand, China, Mongolia 30 m V001 [Data set]. NASA EOSDIS Land Processes DAAC. http://doi.org/10.5067/MEaSUREs/GFSAD/GFSAD30AUNZCNMOCE.001.
    • (2017)
    • Teluguntla, P.1    Thenkabail, P.S.2    Xiong, J.3    Gumma, M.K.4    Congalton, G.R.5    Oliphant, J.A.6    Sankey, T.7    Poehnelt, J.8    Yadav, K.9    Massey, R.10    Phalke, A.11    Smith, C.12
  • 75
    • 36649033114 scopus 로고    scopus 로고
    • Spectral matching techniques to determine historical land-use/land-cover (LULC) and irrigated areas using time-series 0.1-degree AVHRR Pathfinder datasets
    • Thenkabail, P., GangadharaRao, P., Biggs, T., Krishna, M., Turral, H., Spectral matching techniques to determine historical land-use/land-cover (LULC) and irrigated areas using time-series 0.1-degree AVHRR Pathfinder datasets. Photogramm. Eng. Remote Sens. 73 (2007), 1029–1040.
    • (2007) Photogramm. Eng. Remote Sens. , vol.73 , pp. 1029-1040
    • Thenkabail, P.1    GangadharaRao, P.2    Biggs, T.3    Krishna, M.4    Turral, H.5
  • 77
    • 77954533035 scopus 로고    scopus 로고
    • A holistic view of global croplands and their water use for ensuring global food security in the 21st century through advanced remote sensing and non-remote sensing approaches
    • Thenkabail, P.S., Hanjra, M.A., Dheeravath, V., Gumma, M., A holistic view of global croplands and their water use for ensuring global food security in the 21st century through advanced remote sensing and non-remote sensing approaches. Remote Sens. 2:1 (2010), 211–261.
    • (2010) Remote Sens. , vol.2 , Issue.1 , pp. 211-261
    • Thenkabail, P.S.1    Hanjra, M.A.2    Dheeravath, V.3    Gumma, M.4
  • 79
    • 84869238704 scopus 로고    scopus 로고
    • An automated cropland classification algorithm (ACCA) for Tajikistan by combining Landsat, MODIS, and secondary data
    • Thenkabail, P.S., Wu, Z., An automated cropland classification algorithm (ACCA) for Tajikistan by combining Landsat, MODIS, and secondary data. Remote Sens. 4 (2012), 2890–2918.
    • (2012) Remote Sens. , vol.4 , pp. 2890-2918
    • Thenkabail, P.S.1    Wu, Z.2
  • 80
    • 84869505872 scopus 로고    scopus 로고
    • Best merge region-growing segmentation with integrated nonadjacent region object aggregation
    • Tilton, J.C., Tarabalka, Y., Montesano, P.M., Gofman, E., Best merge region-growing segmentation with integrated nonadjacent region object aggregation. IEEE Trans. Geosc. Remote Sens. 50 (2012), 4454–4467.
    • (2012) IEEE Trans. Geosc. Remote Sens. , vol.50 , pp. 4454-4467
    • Tilton, J.C.1    Tarabalka, Y.2    Montesano, P.M.3    Gofman, E.4
  • 82
    • 84884722780 scopus 로고    scopus 로고
    • Land system change and food security: towards multi-scale land system solutions
    • Verburg, P.H., Mertz, O., Erb, K.-H., Haberl, H., Wu, W., Land system change and food security: towards multi-scale land system solutions. Curr. Opin. Environ. Sustain. 5 (2013), 494–502.
    • (2013) Curr. Opin. Environ. Sustain. , vol.5 , pp. 494-502
    • Verburg, P.H.1    Mertz, O.2    Erb, K.-H.3    Haberl, H.4    Wu, W.5
  • 83
    • 84944743397 scopus 로고    scopus 로고
    • Automated annual cropland mapping using knowledge-based temporal features
    • Waldner, F., Canto, G.S., Defourny, P., Automated annual cropland mapping using knowledge-based temporal features. ISPRS J. Photogramm. Remote Sens. 110 (2015), 1–13.
    • (2015) ISPRS J. Photogramm. Remote Sens. , vol.110 , pp. 1-13
    • Waldner, F.1    Canto, G.S.2    Defourny, P.3
  • 85
    • 84927805919 scopus 로고    scopus 로고
    • Mapping global land cover in 2001 and 2010 with spatial-temporal consistency at 250 m resolution
    • Wang, J., Zhao, Y., Li, C., Yu, L., Liu, D., Gong, P., Mapping global land cover in 2001 and 2010 with spatial-temporal consistency at 250 m resolution. ISPRS J. Photogramm. Remote Sens. 103 (2015), 38–47.
    • (2015) ISPRS J. Photogramm. Remote Sens. , vol.103 , pp. 38-47
    • Wang, J.1    Zhao, Y.2    Li, C.3    Yu, L.4    Liu, D.5    Gong, P.6
  • 86
    • 29244490029 scopus 로고    scopus 로고
    • Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images
    • Xiao, X., Boles, S., Frolking, S., Li, C., Babu, J.Y., Salas, W., Moore, B., Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sens. Environ. 100 (2006), 95–113.
    • (2006) Remote Sens. Environ. , vol.100 , pp. 95-113
    • Xiao, X.1    Boles, S.2    Frolking, S.3    Li, C.4    Babu, J.Y.5    Salas, W.6    Moore, B.7
  • 87
    • 85032864011 scopus 로고    scopus 로고
    • Nominal 30-m cropland extent map of continental Africa by integrating pixel-based and object-based algorithms using Sentinel-2 and Landsat-8 data on Google Earth Engine
    • Xiong, J., Thenkabail, P., Tilton, J., Gumma, M., Teluguntla, P., Oliphant, A., Congalton, R., Yadav, K., Gorelick, N., Nominal 30-m cropland extent map of continental Africa by integrating pixel-based and object-based algorithms using Sentinel-2 and Landsat-8 data on Google Earth Engine. Remote Sens., 9, 2017, 1065.
    • (2017) Remote Sens. , vol.9 , pp. 1065
    • Xiong, J.1    Thenkabail, P.2    Tilton, J.3    Gumma, M.4    Teluguntla, P.5    Oliphant, A.6    Congalton, R.7    Yadav, K.8    Gorelick, N.9
  • 89
    • 85040685397 scopus 로고    scopus 로고
    • Issues with large area thematic accuracy assessment for mapping cropland extent: a tale of three continents
    • Yadav, K., Congalton, R.G., Issues with large area thematic accuracy assessment for mapping cropland extent: a tale of three continents. Remote Sens., 10(1), 2017, 53.
    • (2017) Remote Sens. , vol.10 , Issue.1 , pp. 53
    • Yadav, K.1    Congalton, R.G.2
  • 90
    • 85012280058 scopus 로고    scopus 로고
    • Accuracy assessment of seven global land cover datasets over China
    • Yang, Y., Xiao, P., Feng, X., Li, H., Accuracy assessment of seven global land cover datasets over China. ISPRS J. Photogramm. Remote Sens. 125 (2017), 156–173.
    • (2017) ISPRS J. Photogramm. Remote Sens. , vol.125 , pp. 156-173
    • Yang, Y.1    Xiao, P.2    Feng, X.3    Li, H.4
  • 91
    • 84888134923 scopus 로고    scopus 로고
    • FROM-GC: 30 m global cropland extent derived through multisource data integration
    • Yu, L., Wang, J., Clinton, N., Xin, Q., Zhong, L., Chen, Y., Gong, P., FROM-GC: 30 m global cropland extent derived through multisource data integration. Int. J. Digital Earth 6 (2013), 521–533.
    • (2013) Int. J. Digital Earth , vol.6 , pp. 521-533
    • Yu, L.1    Wang, J.2    Clinton, N.3    Xin, Q.4    Zhong, L.5    Chen, Y.6    Gong, P.7
  • 93


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.