메뉴 건너뛰기




Volumn , Issue , 2018, Pages

Backpropagation through the void: Optimizing control variates for black-box gradient estimation

Author keywords

[No Author keywords available]

Indexed keywords

BACKPROPAGATION ALGORITHMS; DEEP LEARNING; LEARNING ALGORITHMS; MACHINE LEARNING; MONTE CARLO METHODS;

EID: 85083950952     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (247)

References (37)
  • 6
    • 33751179655 scopus 로고    scopus 로고
    • An analysis of actor-critic algorithms using eligibility traces: Reinforcement learning with imperfect value functions
    • Hajime Kimura, Shigenobu Kobayashi, et al. An analysis of actor-critic algorithms using eligibility traces: reinforcement learning with imperfect value functions. Journal of Japanese Society for Artificial Intelligence, 15(2):267–275, 2000.
    • (2000) Journal of Japanese Society for Artificial Intelligence , vol.15 , Issue.2 , pp. 267-275
    • Kimura, H.1    Kobayashi, S.2
  • 9
    • 84949683101 scopus 로고    scopus 로고
    • Human-level concept learning through probabilistic program induction
    • Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning through probabilistic program induction. Science, 350(6266):1332–1338, 2015.
    • (2015) Science , vol.350 , Issue.6266 , pp. 1332-1338
    • Lake, B.M.1    Salakhutdinov, R.2    Tenenbaum, J.B.3
  • 15
    • 85083936643 scopus 로고    scopus 로고
    • Reparameterization gradients through acceptance-rejection sampling algorithms
    • Christian Naesseth, Francisco Ruiz, Scott Linderman, and David Blei. Reparameterization gradients through acceptance-rejection sampling algorithms. In Artificial Intelligence and Statistics, pp. 489–498, 2017.
    • (2017) Artificial Intelligence and Statistics , pp. 489-498
    • Naesseth, C.1    Ruiz, F.2    Linderman, S.3    Blei, D.4
  • 22
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • David E Rumelhart and Geoffrey E Hinton. Learning representations by back-propagating errors. Nature, 323:9, 1986.
    • (1986) Nature , vol.323 , pp. 9
    • Rumelhart, D.E.1    Hinton, G.E.2
  • 29
    • 84893343292 scopus 로고    scopus 로고
    • Lecture 6.5—rMSprop: Divide the gradient by a running average of its recent magnitude
    • T. Tieleman and G. Hinton. Lecture 6.5—RmsProp: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 2012.
    • (2012) COURSERA: Neural Networks for Machine Learning
    • Tieleman, T.1    Hinton, G.2
  • 34
    • 0000337576 scopus 로고
    • Simple statistical gradient-following algorithms for connectionist reinforcement learning
    • Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine learning, 8(3-4):229–256, 1992.
    • (1992) Machine Learning , vol.8 , Issue.3-4 , pp. 229-256
    • Williams, R.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.