메뉴 건너뛰기




Volumn , Issue , 2016, Pages

Large-scale approximate kernel canonical correlation analysis

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTERING ALGORITHMS; CORRELATION METHODS; EIGENVALUES AND EIGENFUNCTIONS; MATHEMATICAL TRANSFORMATIONS; OPTIMIZATION;

EID: 85083950557     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (24)

References (84)
  • 12
    • 24644433110 scopus 로고    scopus 로고
    • On the regularization of canonical correlation analysis
    • Bie, Tijl De and Moor, Bart De. On the regularization of canonical correlation analysis. www.esat.kuleuven.ac.be/sista-cosic-docarch/, 2003. Int. Sympos. ICA and BSS.
    • (2003) Int. Sympos. ICA and BSS
    • Bie, T.D.1    Moor, B.D.2
  • 13
    • 79957514113 scopus 로고    scopus 로고
    • Semi-supervised kernel canonical correlation analysis with application to human fMRI
    • Blaschkoa, Matthew B., Sheltonb, Jacquelyn A., Bartelsc, Andreas, Lamperte, Christoph H., and Gretton, Arthur. Semi-supervised kernel canonical correlation analysis with application to human fMRI. Pattern Recognition Letters, 32(11):1572–1583, 2011.
    • (2011) Pattern Recognition Letters , vol.32 , Issue.11 , pp. 1572-1583
    • Blaschkoa, M.B.1    Sheltonb, J.A.2    Bartelsc, A.3    Lamperte, C.H.4    Gretton, A.5
  • 20
    • 84905694258 scopus 로고    scopus 로고
    • Improving vector space word representations using multilingual correlation
    • Faruqui, Manaal and Dyer, Chris. Improving vector space word representations using multilingual correlation. In Proceedings of EACL, 2014.
    • (2014) Proceedings of EACL
    • Faruqui, M.1    Dyer, C.2
  • 22
    • 33847186281 scopus 로고    scopus 로고
    • Statistical consistency of kernel canonical correlation analysis
    • Fukumizu, Kenji, Bach, Francis R., and Gretton, Arthur. Statistical consistency of kernel canonical correlation analysis. Journal of Machine Learning Research, 8:361–383, 2007.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 361-383
    • Fukumizu, K.1    Bach, F.R.2    Gretton, A.3
  • 27
    • 81555213068 scopus 로고    scopus 로고
    • An algorithm for the principal component analysis of large data sets
    • Halko, Nathan, Martinsson, Per-Gunnar, Shkolnisky, Yoel, and Tygert, Mark. An algorithm for the principal component analysis of large data sets. SIAM J. Sci. Comput., 33(5):2580–2594, 2011.
    • (2011) SIAM J. Sci. Comput. , vol.33 , Issue.5 , pp. 2580-2594
    • Halko, N.1    Martinsson, P.-G.2    Shkolnisky, Y.3    Tygert, M.4
  • 29
    • 10044285992 scopus 로고    scopus 로고
    • Canonical correlation analysis: An overview with application to learning methods
    • Hardoon, David R., Szedmak, Sandor, and Shawe-Taylor, John. Canonical correlation analysis: An overview with application to learning methods. Neural Computation, 16(12):2639–2664, 2004.
    • (2004) Neural Computation , vol.16 , Issue.12 , pp. 2639-2664
    • Hardoon, D.R.1    Szedmak, S.2    Shawe-Taylor, J.3
  • 30
    • 34548537654 scopus 로고    scopus 로고
    • Unsupervised analysis of fMRI data using kernel canonical correlation
    • Hardoon, David R., Mouräo-Miranda, Janaina, Brammer, Michael, and Shawe-Taylor, John. Unsupervised analysis of fMRI data using kernel canonical correlation. NeuroImage, 37(4):1250–1259, 2007.
    • (2007) NeuroImage , vol.37 , Issue.4 , pp. 1250-1259
    • Hardoon, D.R.1    Mouräo-Miranda, J.2    Brammer, M.3    Shawe-Taylor, J.4
  • 32
    • 84883394520 scopus 로고    scopus 로고
    • Framing image description as a ranking task: Data, models and evaluation metrics
    • Hodosh, Micah, Young, Peter, and Hockenmaier, Julia. Framing image description as a ranking task: Data, models and evaluation metrics. Journal of Artificial Intelligence Research, 47:853–899, 2013.
    • (2013) Journal of Artificial Intelligence Research , vol.47 , pp. 853-899
    • Hodosh, M.1    Young, P.2    Hockenmaier, J.3
  • 33
    • 0000107975 scopus 로고
    • Relations between two sets of variates
    • Hotelling, Harold. Relations between two sets of variates. Biometrika, 28(3/4):321–377, 1936.
    • (1936) Biometrika , vol.28 , Issue.3-4 , pp. 321-377
    • Hotelling, H.1
  • 37
    • 34247568488 scopus 로고    scopus 로고
    • Discriminative learning and recognition of image set classes using canonical correlations
    • Kim, Tae-Kyun, Kittler, Josef, and Cipolla, Roberto. Discriminative learning and recognition of image set classes using canonical correlations. IEEE Trans. Pattern Analysis and Machine Intelligence, 29(6):1005–1018, 2007.
    • (2007) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.29 , Issue.6 , pp. 1005-1018
    • Kim, T.-K.1    Kittler, J.2    Cipolla, R.3
  • 38
    • 49849122833 scopus 로고
    • A method of stochastic approximation for the determination of the least eigenvalue of a symmetric matrix
    • Krasulina, T. P. A method of stochastic approximation for the determination of the least eigenvalue of a symmetric matrix. USSR Computational Mathematics and Mathematical Physics, 9(6):189–195, 1969.
    • (1969) USSR Computational Mathematics and Mathematical Physics , vol.9 , Issue.6 , pp. 189-195
    • Krasulina, T.P.1
  • 40
    • 0034304404 scopus 로고    scopus 로고
    • Kernel and nonlinear canonical correlation analysis
    • Lai, P. L. and Fyfe, C. Kernel and nonlinear canonical correlation analysis. Int. J. Neural Syst., 10(5):365–377, 2000.
    • (2000) Int. J. Neural Syst. , vol.10 , Issue.5 , pp. 365-377
    • Lai, P.L.1    Fyfe, C.2
  • 43
    • 33748530659 scopus 로고    scopus 로고
    • Using KCCA for Japanese-english cross-language information retrieval and classification
    • Li, Yaoyong and Shawe-Taylor, John. Using KCCA for japanese-english cross-language information retrieval and classification. Journal of Intelligent Information Systems, 27(2):117–133, 2005.
    • (2005) Journal of Intelligent Information Systems , vol.27 , Issue.2 , pp. 117-133
    • Li, Y.1    Shawe-Taylor, J.2
  • 44
    • 57849102080 scopus 로고    scopus 로고
    • Training invariant support vector machines using selective sampling
    • Loosli, Gaëlle, Canu, Stéphane, and Bottou, Léon. Training invariant support vector machines using selective sampling. In Large Scale Kernel Machines, pp. 301–320. 2007.
    • (2007) Large Scale Kernel Machines , pp. 301-320
    • Loosli, G.1    Canu, S.2    Bottou, L.3
  • 48
    • 84937951105 scopus 로고    scopus 로고
    • Large scale canonical correlation analysis with iterative least squares
    • Lu, Yichao and Foster, Dean P. Large scale canonical correlation analysis with iterative least squares. In Advances in Neural Information Processing Systems (NIPS), volume 27, pp. 91–99, 2014.
    • (2014) Advances in Neural Information Processing Systems (NIPS) , vol.27 , pp. 91-99
    • Lu, Y.1    Foster, D.P.2
  • 50
    • 84969583275 scopus 로고    scopus 로고
    • Finding linear structure in large datasets with scalable canonical correlation analysis
    • Ma, Zhuang, Lu, Yichao, and Foster, Dean. Finding linear structure in large datasets with scalable canonical correlation analysis. In Proc. of the 32st Int. Conf. Machine Learning (ICML 2015), pp. 169–178, 2015.
    • (2015) Proc. Of the 32st Int. Conf. Machine Learning (ICML 2015) , pp. 169-178
    • Ma, Z.1    Lu, Y.2    Foster, D.3
  • 54
    • 70350280106 scopus 로고
    • Chemometric classification of some European wines using pyrolysis mass spectrometry
    • Montanarella, Luca, Bassani, Maria Rosa, and Bréas, Olivier. Chemometric classification of some European wines using pyrolysis mass spectrometry. Rapid Communications in Mass Spectrometry, 9(15):1589–1593, 1995.
    • (1995) Rapid Communications in Mass Spectrometry , vol.9 , Issue.15 , pp. 1589-1593
    • Montanarella, L.1    Bassani, M.R.2    Bréas, O.3
  • 56
    • 0022013023 scopus 로고
    • On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix
    • Oja, Erkki and Karhunen, Juha. On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix. J. Math. Anal. Appl., 106(1):69–84, 1985.
    • (1985) J. Math. Anal. Appl. , vol.106 , Issue.1 , pp. 69-84
    • Oja, E.1    Karhunen, J.2
  • 57
    • 85071039245 scopus 로고    scopus 로고
    • Spherical random features for polynomial kernels
    • Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M., and Garnett, R. (eds), MIT Press, Cambridge, MA
    • Pennington, Jeffrey, Yu, Felix, and Kumar, Sanjiv. Spherical random features for polynomial kernels. In Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M., and Garnett, R. (eds.), Advances in Neural Information Processing Systems (NIPS), volume 28, pp. 1837–1845. MIT Press, Cambridge, MA, 2015.
    • (2015) Advances in Neural Information Processing Systems (NIPS) , vol.28 , pp. 1837-1845
    • Pennington, J.1    Yu, F.2    Kumar, S.3
  • 60
    • 78149297677 scopus 로고    scopus 로고
    • Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning
    • Rahimi, Ali and Recht, Benjamin. Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning. In Advances in Neural Information Processing Systems (NIPS), volume 21, pp. 1313–1320, 2009.
    • (2009) Advances in Neural Information Processing Systems (NIPS) , vol.21 , pp. 1313-1320
    • Rahimi, A.1    Recht, B.2
  • 61
    • 84872514178 scopus 로고    scopus 로고
    • A stochastic gradient method with an exponential convergence rate for finite training sets
    • Roux, Nicolas Le, Schmidt, Mark, and Bach, Francis. A stochastic gradient method with an exponential convergence rate for finite training sets. In Advances in Neural Information Processing Systems (NIPS), volume 25, pp. 2672–2680, 2012.
    • (2012) Advances in Neural Information Processing Systems (NIPS) , vol.25 , pp. 2672-2680
    • Roux, N.L.1    Schmidt, M.2    Bach, F.3
  • 64
    • 0004094721 scopus 로고    scopus 로고
    • Learning with kernels. Support vector machines, regularization, optimization, and beyond
    • Schölkopf, Bernhard and Smola, Alexander J. Learning with Kernels. Support Vector Machines, Regularization, Optimization, and Beyond. Adaptive Computation and Machine Learning Series. 2001.
    • (2001) Adaptive Computation and Machine Learning Series
    • Schölkopf, B.1    Smola, A.J.2
  • 65
    • 84969523896 scopus 로고    scopus 로고
    • A stochastic PCA and SVD algorithm with an exponential convergence rate
    • Shamir, Ohad. A stochastic PCA and SVD algorithm with an exponential convergence rate. In Proc. of the 32st Int. Conf. Machine Learning (ICML 2015), pp. 144–152, 2015.
    • (2015) Proc. Of the 32st Int. Conf. Machine Learning (ICML 2015) , pp. 144-152
    • Shamir, O.1
  • 68
    • 0001318292 scopus 로고
    • Canonical ridge and econometrics of joint production
    • Vinod, H. D. Canonical ridge and econometrics of joint production. Journal of Econometrics, 4(2):147–166, 1976.
    • (1976) Journal of Econometrics , vol.4 , Issue.2 , pp. 147-166
    • Vinod, H.D.1
  • 73
    • 56349165656 scopus 로고    scopus 로고
    • Randomized online PCA algorithms with regret bounds that are logarithmic in the dimension
    • Warmuth, Manfred K. and Kuzmin, Dima. Randomized online PCA algorithms with regret bounds that are logarithmic in the dimension. Journal of Machine Learning Research, 9:2287–2320, 2008.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 2287-2320
    • Warmuth, M.K.1    Kuzmin, D.2
  • 76
    • 70149096300 scopus 로고    scopus 로고
    • A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis
    • Witten, Daniela M., Tibshirani, Robert, and Hastie, Trevor. A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics, 10(3):515–534, 2009.
    • (2009) Biostatistics , vol.10 , Issue.3 , pp. 515-534
    • Witten, D.M.1    Tibshirani, R.2    Hastie, T.3
  • 77
    • 85071051477 scopus 로고    scopus 로고
    • Scale up nonlinear component analysis with doubly stochastic gradients
    • Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M., and Garnett, R. (eds), MIT Press, Cambridge, MA
    • Xie, Bo, Liang, Yingyu, and Song, Le. Scale up nonlinear component analysis with doubly stochastic gradients. In Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M., and Garnett, R. (eds.), Advances in Neural Information Processing Systems (NIPS), volume 28, pp. 2332–2340. MIT Press, Cambridge, MA, 2015.
    • (2015) Advances in Neural Information Processing Systems (NIPS) , vol.28 , pp. 2332-2340
    • Xie, B.1    Liang, Y.2    Song, L.3
  • 83
    • 59149093832 scopus 로고    scopus 로고
    • Density-weighted Nyström method for computing large kernel eigen-systems
    • Zhang, Kai and Kwok, James T. Density-weighted Nyström method for computing large kernel eigen-systems. Neural Computation, 21(1):121–146, 2009.
    • (2009) Neural Computation , vol.21 , Issue.1 , pp. 121-146
    • Zhang, K.1    Kwok, J.T.2
  • 84
    • 77957779140 scopus 로고    scopus 로고
    • Clustered Nyström method for large scale manifold learning and dimension reduction
    • Zhang, Kai and Kwok, James T. Clustered Nyström method for large scale manifold learning and dimension reduction. IEEE Trans. Neural Networks, 21(10):1576–1587, 2010.
    • (2010) IEEE Trans. Neural Networks , vol.21 , Issue.10 , pp. 1576-1587
    • Zhang, K.1    Kwok, J.T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.