메뉴 건너뛰기




Volumn 4, Issue , 2014, Pages 3196-3204

Randomized nonlinear component analysis

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLUSTERING ALGORITHMS; LEARNING SYSTEMS; MULTIVARIANT ANALYSIS; NONLINEAR ANALYSIS;

EID: 84919825559     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (81)

References (34)
  • 3
    • 85129863452 scopus 로고    scopus 로고
    • Kernel CCA for multi-view learning of acoustic features using articulatory measurements
    • Arora, R. and Livescu, K. Kernel CCA for multi-view learning of acoustic features using articulatory measurements. MLSLP, 2012.
    • (2012) MLSLP
    • Arora, R.1    Livescu, K.2
  • 4
    • 84897484728 scopus 로고    scopus 로고
    • Efficient dimensionality reduction for canonical correlation analysis
    • Avron, H., Boutsidis, C., Toledo, S., and Zouzias, A. Efficient dimensionality reduction for canonical correlation analysis. ICML, 2013.
    • (2013) ICML
    • Avron, H.1    Boutsidis, C.2    Toledo, S.3    Zouzias, A.4
  • 5
    • 13444297533 scopus 로고    scopus 로고
    • Kernel independent component analysis
    • Bach, F. R. and Jordan, M. I. Kernel independent component analysis. JMLR, 2002.
    • (2002) JMLR
    • Bach, F.R.1    Jordan, M.I.2
  • 6
    • 33847257340 scopus 로고    scopus 로고
    • Restarted block lanczos bidiag- onalization methods
    • Baglama, J. and Reichel, L. Restarted block lanczos bidiag- onalization methods. Numerical Algorithms, 2006.
    • (2006) Numerical Algorithms
    • Baglama, J.1    Reichel, L.2
  • 7
    • 0024774330 scopus 로고
    • Neural networks and principal component analysis: Learning from examples without local minima
    • Baldi, P. and Hornik, K. Neural networks and principal component analysis: Learning from examples without local minima. Neural Networks, 1989.
    • (1989) Neural Networks
    • Baldi, P.1    Hornik, K.2
  • 11
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G. E. and Salakhutdinov, R. R. Reducing the dimensionality of data with neural networks. Science, 2006.
    • (2006) Science
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 12
    • 0000107975 scopus 로고
    • Relations between two sets of variates
    • Hotelling, H. Relations Between Two Sets of Variates. Biometrika, 1936.
    • (1936) Biometrika
    • Hotelling, H.1
  • 14
    • 70450148854 scopus 로고    scopus 로고
    • Multi-view regression via canonical correlation analysis
    • Kakade, S. M. and Foster, D. R Multi-view regression via canonical correlation analysis. COLT, 2007.
    • (2007) COLT
    • Kakade, S.M.1    Foster, D.R.2
  • 17
    • 70450172710 scopus 로고    scopus 로고
    • Learning to detect unseen object classes by between class attribute transfer
    • Lampert, C. H., Nickisch, H., and Harmeling, S. Learning to detect unseen object classes by between class attribute transfer. CVPR, 2009.
    • (2009) CVPR
    • Lampert, C.H.1    Nickisch, H.2    Harmeling, S.3
  • 18
    • 84897549944 scopus 로고    scopus 로고
    • Fast food - Approximating kernel expansions in loglinear time
    • Le, Q., Sarlos, T., and Smola, A. Fast food - Approximating kernel expansions in loglinear time. ICML, 2013.
    • (2013) ICML
    • Le, Q.1    Sarlos, T.2    Smola, A.3
  • 24
    • 84898987594 scopus 로고    scopus 로고
    • Correlated random features for fast semi-supervised learning
    • McWilliams, B., Balduzzi, D., and Buhmann, J. Correlated random features for fast semi-supervised learning. NIPS, 2013.
    • (2013) NIPS
    • McWilliams, B.1    Balduzzi, D.2    Buhmann, J.3
  • 25
    • 0000325341 scopus 로고
    • On lines and planes of closest fit to systems of points in space
    • Pearson, K. On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 1901.
    • (1901) Philosophical Magazine
    • Pearson, K.1
  • 26
    • 77953199346 scopus 로고    scopus 로고
    • Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning
    • Rahimi, A. and Recht, B. Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning. NIPS, 2008.
    • (2008) NIPS
    • Rahimi, A.1    Recht, B.2
  • 29
    • 84919813326 scopus 로고    scopus 로고
    • User-friendly tools for random matrices: An introduction
    • Tropp, J. A. User-Friendly Tools for Random Matrices: An Introduction. NIPS Tutorials, 2012.
    • (2012) NIPS Tutorials
    • Tropp, J.A.1
  • 30
    • 68149165759 scopus 로고    scopus 로고
    • A new learning paradigm: Learning using privileged information
    • Vapnik, V. and Vashist, A. A new learning paradigm: Learning using privileged information. Neural Networks, 2009.
    • (2009) Neural Networks
    • Vapnik, V.1    Vashist, A.2
  • 32
    • 84899010839 scopus 로고    scopus 로고
    • Using the nystrom method to speed up kernel machines
    • Williams, C. and Seeger, M. Using the Nystrom method to speed up kernel machines. NIPS, 2001.
    • (2001) NIPS
    • Williams, C.1    Seeger, M.2
  • 33
    • 84905242937 scopus 로고    scopus 로고
    • Quasi-monte carlo feature maps for shift-invariant kernels
    • Yang, J., Sindhwani, V., Avron, H., and Mahoney, M. W. Quasi-Monte Carlo Feature Maps for Shift-Invariant Kernels. ICML, 2014.
    • (2014) ICML
    • Yang, J.1    Sindhwani, V.2    Avron, H.3    Mahoney, M.W.4
  • 34
    • 84877740547 scopus 로고    scopus 로고
    • Nystrom method VS random fourier features: A theoretical and empirical comparison
    • Yang, T., Li, Y., Mahdavi, M., Jin, R., and Zhou, Z. Nystrom method vs random Fourier features: A theoretical and empirical comparison. NIPS, 2012.
    • (2012) NIPS
    • Yang, T.1    Li, Y.2    Mahdavi, M.3    Jin, R.4    Zhou, Z.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.