-
2
-
-
84897553529
-
Deep canonical correlation analysis
-
Andrew, G., Arora, R., Livescu, K., and Bilmes, J. Deep canonical correlation analysis. ICML, 2013.
-
(2013)
ICML
-
-
Andrew, G.1
Arora, R.2
Livescu, K.3
Bilmes, J.4
-
3
-
-
85129863452
-
Kernel CCA for multi-view learning of acoustic features using articulatory measurements
-
Arora, R. and Livescu, K. Kernel CCA for multi-view learning of acoustic features using articulatory measurements. MLSLP, 2012.
-
(2012)
MLSLP
-
-
Arora, R.1
Livescu, K.2
-
4
-
-
84897484728
-
Efficient dimensionality reduction for canonical correlation analysis
-
Avron, H., Boutsidis, C., Toledo, S., and Zouzias, A. Efficient dimensionality reduction for canonical correlation analysis. ICML, 2013.
-
(2013)
ICML
-
-
Avron, H.1
Boutsidis, C.2
Toledo, S.3
Zouzias, A.4
-
5
-
-
13444297533
-
Kernel independent component analysis
-
Bach, F. R. and Jordan, M. I. Kernel independent component analysis. JMLR, 2002.
-
(2002)
JMLR
-
-
Bach, F.R.1
Jordan, M.I.2
-
6
-
-
33847257340
-
Restarted block lanczos bidiag- onalization methods
-
Baglama, J. and Reichel, L. Restarted block lanczos bidiag- onalization methods. Numerical Algorithms, 2006.
-
(2006)
Numerical Algorithms
-
-
Baglama, J.1
Reichel, L.2
-
7
-
-
0024774330
-
Neural networks and principal component analysis: Learning from examples without local minima
-
Baldi, P. and Hornik, K. Neural networks and principal component analysis: Learning from examples without local minima. Neural Networks, 1989.
-
(1989)
Neural Networks
-
-
Baldi, P.1
Hornik, K.2
-
9
-
-
71149099083
-
Multi-view clustering via canonical correlation analysis
-
Chaudhuri, K., Kakade, S. M., Livescu, K., and Sridha- ran, K. Multi-view clustering via canonical correlation analysis. ICML, 2009.
-
(2009)
ICML
-
-
Chaudhuri, K.1
Kakade, S.M.2
Livescu, K.3
Sridha- Ran, K.4
-
10
-
-
84919932215
-
Compact random feature maps
-
Hamid, R., Xiao, Y., Gittens, A., and DeCoste, D. Compact random feature maps. ICML, 2014.
-
(2014)
ICML
-
-
Hamid, R.1
Xiao, Y.2
Gittens, A.3
De Coste, D.4
-
11
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton, G. E. and Salakhutdinov, R. R. Reducing the dimensionality of data with neural networks. Science, 2006.
-
(2006)
Science
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
12
-
-
0000107975
-
Relations between two sets of variates
-
Hotelling, H. Relations Between Two Sets of Variates. Biometrika, 1936.
-
(1936)
Biometrika
-
-
Hotelling, H.1
-
14
-
-
70450148854
-
Multi-view regression via canonical correlation analysis
-
Kakade, S. M. and Foster, D. R Multi-view regression via canonical correlation analysis. COLT, 2007.
-
(2007)
COLT
-
-
Kakade, S.M.1
Foster, D.R.2
-
17
-
-
70450172710
-
Learning to detect unseen object classes by between class attribute transfer
-
Lampert, C. H., Nickisch, H., and Harmeling, S. Learning to detect unseen object classes by between class attribute transfer. CVPR, 2009.
-
(2009)
CVPR
-
-
Lampert, C.H.1
Nickisch, H.2
Harmeling, S.3
-
18
-
-
84897549944
-
Fast food - Approximating kernel expansions in loglinear time
-
Le, Q., Sarlos, T., and Smola, A. Fast food - Approximating kernel expansions in loglinear time. ICML, 2013.
-
(2013)
ICML
-
-
Le, Q.1
Sarlos, T.2
Smola, A.3
-
22
-
-
84919813328
-
Matrix concentration inequalities via the method of exchangeable pairs
-
Mackey, L., Jordan, M. I., Chen, R. Y., Farrell, B., and Tropp, J. A. Matrix Concentration Inequalities via the Method of Exchangeable Pairs. Annals of Probability, 2014.
-
(2014)
Annals of Probability
-
-
MacKey, L.1
Jordan, M.I.2
Chen, R.Y.3
Farrell, B.4
Tropp, J.A.5
-
24
-
-
84898987594
-
Correlated random features for fast semi-supervised learning
-
McWilliams, B., Balduzzi, D., and Buhmann, J. Correlated random features for fast semi-supervised learning. NIPS, 2013.
-
(2013)
NIPS
-
-
McWilliams, B.1
Balduzzi, D.2
Buhmann, J.3
-
25
-
-
0000325341
-
On lines and planes of closest fit to systems of points in space
-
Pearson, K. On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 1901.
-
(1901)
Philosophical Magazine
-
-
Pearson, K.1
-
26
-
-
77953199346
-
Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning
-
Rahimi, A. and Recht, B. Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning. NIPS, 2008.
-
(2008)
NIPS
-
-
Rahimi, A.1
Recht, B.2
-
27
-
-
0003408420
-
-
MIT Press
-
Scholkopf, B. and Smola, A. J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, 2002.
-
(2002)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and beyond
-
-
Scholkopf, B.1
Smola, A.J.2
-
29
-
-
84919813326
-
User-friendly tools for random matrices: An introduction
-
Tropp, J. A. User-Friendly Tools for Random Matrices: An Introduction. NIPS Tutorials, 2012.
-
(2012)
NIPS Tutorials
-
-
Tropp, J.A.1
-
30
-
-
68149165759
-
A new learning paradigm: Learning using privileged information
-
Vapnik, V. and Vashist, A. A new learning paradigm: Learning using privileged information. Neural Networks, 2009.
-
(2009)
Neural Networks
-
-
Vapnik, V.1
Vashist, A.2
-
32
-
-
84899010839
-
Using the nystrom method to speed up kernel machines
-
Williams, C. and Seeger, M. Using the Nystrom method to speed up kernel machines. NIPS, 2001.
-
(2001)
NIPS
-
-
Williams, C.1
Seeger, M.2
-
33
-
-
84905242937
-
Quasi-monte carlo feature maps for shift-invariant kernels
-
Yang, J., Sindhwani, V., Avron, H., and Mahoney, M. W. Quasi-Monte Carlo Feature Maps for Shift-Invariant Kernels. ICML, 2014.
-
(2014)
ICML
-
-
Yang, J.1
Sindhwani, V.2
Avron, H.3
Mahoney, M.W.4
-
34
-
-
84877740547
-
Nystrom method VS random fourier features: A theoretical and empirical comparison
-
Yang, T., Li, Y., Mahdavi, M., Jin, R., and Zhou, Z. Nystrom method vs random Fourier features: A theoretical and empirical comparison. NIPS, 2012.
-
(2012)
NIPS
-
-
Yang, T.1
Li, Y.2
Mahdavi, M.3
Jin, R.4
Zhou, Z.5
|