메뉴 건너뛰기




Volumn , Issue , 2017, Pages

Black-box importance sampling

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; SAMPLING;

EID: 85083938188     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (67)

References (49)
  • 1
    • 84953346435 scopus 로고    scopus 로고
    • Noisy monte carlo: Convergence of markov chains with approximate transition kernels
    • Pierre Alquier, Nial Friel, Richard Everitt, and Aidan Boland. Noisy Monte Carlo: Convergence of markov chains with approximate transition kernels. Statistics and Computing, 26(1-2):29–47, 2016.
    • (2016) Statistics and Computing , vol.26 , Issue.1-2 , pp. 29-47
    • Alquier, P.1    Friel, N.2    Everitt, R.3    Boland, A.4
  • 5
    • 84872608855 scopus 로고    scopus 로고
    • Markov chain importance sampling with applications to rare event probability estimation
    • Zdravko I Botev, Pierre L’Ecuyer, and Bruno Tuffin. Markov chain importance sampling with applications to rare event probability estimation. Statistics and Computing, 23(2):271–285, 2013.
    • (2013) Statistics and Computing , vol.23 , Issue.2 , pp. 271-285
    • Botev, Z.I.1    L’Ecuyer, P.2    Tuffin, B.3
  • 6
    • 84874257732 scopus 로고
    • Better subset regression using the nonnegative garrote
    • Leo Breiman. Better subset regression using the nonnegative garrote. Technometrics, 37(4):373–384, 1995.
    • (1995) Technometrics , vol.37 , Issue.4 , pp. 373-384
    • Breiman, L.1
  • 7
    • 84965112904 scopus 로고    scopus 로고
    • Frank-Wolfe bayesian quadrature: Probabilistic integration with theoretical guarantees
    • François-Xavier Briol, Chris Oates, Mark Girolami, and Michael A Osborne. Frank-Wolfe Bayesian Quadrature: Probabilistic integration with theoretical guarantees. In NIPS, 2015a.
    • (2015) NIPS
    • Briol, F.-X.1    Oates, C.2    Girolami, M.3    Osborne, M.A.4
  • 9
    • 80053159212 scopus 로고    scopus 로고
    • Super-samples from kernel herding
    • Yutian Chen, Max Welling, and Alex Smola. Super-samples from kernel herding. In UAI, 2010.
    • (2010) UAI
    • Chen, Y.1    Welling, M.2    Smola, A.3
  • 11
    • 0036583160 scopus 로고    scopus 로고
    • A parallel mixture of SVMs for very large scale problems
    • Ronan Collobert, Samy Bengio, and Yoshua Bengio. A parallel mixture of SVMs for very large scale problems. Neural computation, 14(5):1105–1114, 2002.
    • (2002) Neural Computation , vol.14 , Issue.5 , pp. 1105-1114
    • Collobert, R.1    Bengio, S.2    Bengio, Y.3
  • 13
    • 84875650303 scopus 로고    scopus 로고
    • Bayesian inference and the parametric bootstrap
    • Bradley Efron. Bayesian inference and the parametric bootstrap. The annals of applied statistics, 6(4):1971, 2012.
    • (2012) The Annals of Applied Statistics , vol.6 , Issue.4 , pp. 1971
    • Efron, B.1
  • 15
    • 84897694817 scopus 로고    scopus 로고
    • Variance reduction techniques for gradient estimates in reinforcement learning
    • Evan Greensmith, Peter L Bartlett, and Jonathan Baxter. Variance reduction techniques for gradient estimates in reinforcement learning. Journal of Machine Learning Research, 5(Nov):1471–1530, 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , Issue.Nov , pp. 1471-1530
    • Greensmith, E.1    Bartlett, P.L.2    Baxter, J.3
  • 17
    • 84898967883 scopus 로고    scopus 로고
    • On sampling from the gibbs distribution with random maximum a-posteriori perturbations
    • Tamir Hazan, Subhransu Maji, and Tommi Jaakkola. On sampling from the gibbs distribution with random maximum a-posteriori perturbations. In NIPS, pages 1268–1276, 2013.
    • (2013) NIPS , pp. 1268-1276
    • Hazan, T.1    Maji, S.2    Jaakkola, T.3
  • 18
    • 37549027256 scopus 로고    scopus 로고
    • Importance sampling via the estimated sampler
    • Masayuki Henmi, Ryo Yoshida, and Shinto Eguchi. Importance sampling via the estimated sampler. Biometrika, 94(4):985–991, 2007.
    • (2007) Biometrika , vol.94 , Issue.4 , pp. 985-991
    • Henmi, M.1    Yoshida, R.2    Eguchi, S.3
  • 19
    • 84901687683 scopus 로고    scopus 로고
    • The no-u-turn sampler: Adaptively setting path lengths in hamiltonian monte carlo
    • Matthew D Hoffman and Andrew Gelman. The no-u-turn sampler: adaptively setting path lengths in hamiltonian monte carlo. Journal of Machine Learning Research, 15 (1):1593–1623, 2014.
    • (2014) Journal of Machine Learning Research , vol.15 , Issue.1 , pp. 1593-1623
    • Hoffman, M.D.1    Gelman, A.2
  • 20
    • 84886052096 scopus 로고    scopus 로고
    • Optimally-weighted herding is bayesian quadrature
    • Ferenc Huszár and David Duvenaud. Optimally-weighted Herding is Bayesian quadrature. In UAI, 2012.
    • (2012) UAI
    • Huszár, F.1    Duvenaud, D.2
  • 21
    • 84965146461 scopus 로고    scopus 로고
    • Toward minimax off-policy value estimation
    • Lihong Li, Rémi Munos, and Csaba Szepesvári. Toward minimax off-policy value estimation. In AISTATS, 2015.
    • (2015) AISTATS
    • Li, L.1    Munos, R.2    Szepesvári, C.3
  • 23
    • 84965139754 scopus 로고    scopus 로고
    • Probabilistic variational bounds for graphical models
    • Qiang Liu, John W Fisher III, and Alexander T Ihler. Probabilistic variational bounds for graphical models. In NIPS, pages 1432–1440, 2015.
    • (2015) NIPS , pp. 1432-1440
    • Liu, Q.1    Fisher, J.W.2    Ihler, A.T.3
  • 24
    • 85045554292 scopus 로고    scopus 로고
    • A kernelized stein discrepancy for goodness-of-fit tests and model evaluation
    • Qiang Liu, Jason D Lee, and Michael I Jordan. A kernelized stein discrepancy for goodness-of-fit tests and model evaluation. In ICML, 2016.
    • (2016) ICML
    • Liu, Q.1    Lee, J.D.2    Jordan, M.I.3
  • 25
    • 0033466420 scopus 로고    scopus 로고
    • Sequential importance sampling for nonparametric bayes models: The next generation
    • Steven N MacEachern, Merlise Clyde, and Jun S Liu. Sequential importance sampling for nonparametric Bayes models: The next generation. Canadian Journal of Statistics, 27(2):251–267, 1999.
    • (1999) Canadian Journal of Statistics , vol.27 , Issue.2 , pp. 251-267
    • MacEachern, S.N.1    Clyde, M.2    Liu, J.S.3
  • 28
    • 0000273048 scopus 로고    scopus 로고
    • Annealed importance sampling
    • Radford M Neal. Annealed importance sampling. Statistics and Computing, 11(2):125–139, 2001.
    • (2001) Statistics and Computing , vol.11 , Issue.2 , pp. 125-139
    • Neal, R.M.1
  • 29
    • 0023168639 scopus 로고
    • On control variate estimators
    • Barry L Nelson. On control variate estimators. Computers & Operations Research, 14(3):219–225, 1987.
    • (1987) Computers & Operations Research , vol.14 , Issue.3 , pp. 219-225
    • Nelson, B.L.1
  • 30
    • 77958588617 scopus 로고    scopus 로고
    • Estimating divergence functionals and the likelihood ratio by convex risk minimization
    • XuanLong Nguyen, Martin J Wainwright, Michael Jordan, et al. Estimating divergence functionals and the likelihood ratio by convex risk minimization. Information Theory, IEEE Transactions on, 56(11):5847–5861, 2010.
    • (2010) Information Theory, IEEE Transactions on , vol.56 , Issue.11 , pp. 5847-5861
    • Nguyen, X.1    Wainwright, M.J.2    Jordan, M.3
  • 36
    • 84856654560 scopus 로고    scopus 로고
    • Perturb-and-map random fields: Using discrete optimization to learn and sample from energy models
    • IEEE
    • George Papandreou and Alan L Yuille. Perturb-and-map random fields: Using discrete optimization to learn and sample from energy models. In ICCV, pages 193–200. IEEE, 2011.
    • (2011) ICCV , pp. 193-200
    • Papandreou, G.1    Yuille, A.L.2
  • 37
    • 84955506831 scopus 로고    scopus 로고
    • Black box variational inference
    • Rajesh Ranganath, Sean Gerrish, and David M Blei. Black box variational inference. In AISTATS, pages 814–822, 2014.
    • (2014) AISTATS , pp. 814-822
    • Ranganath, R.1    Gerrish, S.2    Blei, D.M.3
  • 38
    • 84969776493 scopus 로고    scopus 로고
    • Variational inference with normalizing flows
    • Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows. In ICML, 2015.
    • (2015) ICML
    • Rezende, D.J.1    Mohamed, S.2
  • 40
    • 84969835291 scopus 로고    scopus 로고
    • Markov chain monte carlo and variational inference: Bridging the gap
    • Tim Salimans, Diederik P Kingma, and Max Welling. Markov chain Monte Carlo and variational inference: Bridging the gap. In ICML, 2015.
    • (2015) ICML
    • Salimans, T.1    Kingma, D.P.2    Welling, M.3
  • 43
    • 85161964516 scopus 로고    scopus 로고
    • Direct importance estimation with model selection and its application to covariate shift adaptation
    • Masashi Sugiyama, Shinichi Nakajima, Hisashi Kashima, Paul V Buenau, and Motoaki Kawanabe. Direct importance estimation with model selection and its application to covariate shift adaptation. In NIPS, 2008.
    • (2008) NIPS
    • Sugiyama, M.1    Nakajima, S.2    Kashima, H.3    Buenau, P.V.4    Kawanabe, M.5
  • 44
  • 45
    • 65749118363 scopus 로고    scopus 로고
    • Graphical models, exponential families, and variational inference
    • Martin J Wainwright and Michael I Jordan. Graphical models, exponential families, and variational inference. Foundations and TrendsR in Machine Learning, 1(1-2): 1–305, 2008.
    • (2008) Foundations and TrendsR in Machine Learning , vol.1 , Issue.1-2 , pp. 1-305
    • Wainwright, M.J.1    Jordan, M.I.2
  • 47
    • 80053452150 scopus 로고    scopus 로고
    • Bayesian learning via stochastic gradient langevin dynamics
    • Max Welling and Yee W Teh. Bayesian learning via stochastic gradient Langevin dynamics. In ICML, 2011.
    • (2011) ICML
    • Welling, M.1    Teh, Y.W.2
  • 48
    • 84880919765 scopus 로고    scopus 로고
    • A novel adaptive importance sampling algorithm based on markov chain and low-discrepancy sequence
    • Xiukai Yuan, Zhenzhou Lu, Changcong Zhou, and Zhufeng Yue. A novel adaptive importance sampling algorithm based on markov chain and low-discrepancy sequence. Aerospace Science and Technology, 29(1):253–261, 2013.
    • (2013) Aerospace Science and Technology , vol.29 , Issue.1 , pp. 253-261
    • Yuan, X.1    Lu, Z.2    Zhou, C.3    Yue, Z.4
  • 49
    • 84965142446 scopus 로고    scopus 로고
    • Stochastic optimization with importance sampling
    • Peilin Zhao and Tong Zhang. Stochastic optimization with importance sampling. ICML, 2015.
    • (2015) ICML
    • Zhao, P.1    Zhang, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.