-
1
-
-
84953346435
-
Noisy monte carlo: Convergence of markov chains with approximate transition kernels
-
Pierre Alquier, Nial Friel, Richard Everitt, and Aidan Boland. Noisy Monte Carlo: Convergence of markov chains with approximate transition kernels. Statistics and Computing, 26(1-2):29–47, 2016.
-
(2016)
Statistics and Computing
, vol.26
, Issue.1-2
, pp. 29-47
-
-
Alquier, P.1
Friel, N.2
Everitt, R.3
Boland, A.4
-
5
-
-
84872608855
-
Markov chain importance sampling with applications to rare event probability estimation
-
Zdravko I Botev, Pierre L’Ecuyer, and Bruno Tuffin. Markov chain importance sampling with applications to rare event probability estimation. Statistics and Computing, 23(2):271–285, 2013.
-
(2013)
Statistics and Computing
, vol.23
, Issue.2
, pp. 271-285
-
-
Botev, Z.I.1
L’Ecuyer, P.2
Tuffin, B.3
-
6
-
-
84874257732
-
Better subset regression using the nonnegative garrote
-
Leo Breiman. Better subset regression using the nonnegative garrote. Technometrics, 37(4):373–384, 1995.
-
(1995)
Technometrics
, vol.37
, Issue.4
, pp. 373-384
-
-
Breiman, L.1
-
7
-
-
84965112904
-
Frank-Wolfe bayesian quadrature: Probabilistic integration with theoretical guarantees
-
François-Xavier Briol, Chris Oates, Mark Girolami, and Michael A Osborne. Frank-Wolfe Bayesian Quadrature: Probabilistic integration with theoretical guarantees. In NIPS, 2015a.
-
(2015)
NIPS
-
-
Briol, F.-X.1
Oates, C.2
Girolami, M.3
Osborne, M.A.4
-
8
-
-
84965141128
-
-
arXiv preprint
-
François-Xavier Briol, Chris Oates, Mark Girolami, Michael A Osborne, Dino Sejdinovic, et al. Probabilistic integration: A role for statisticians in numerical analysis? arXiv preprint http://arxiv.org/abs/1512.00933, 2015b.
-
(2015)
Probabilistic Integration: A Role for Statisticians in Numerical Analysis?
-
-
Briol, F.-X.1
Oates, C.2
Girolami, M.3
Osborne, M.A.4
Sejdinovic, D.5
-
9
-
-
80053159212
-
Super-samples from kernel herding
-
Yutian Chen, Max Welling, and Alex Smola. Super-samples from kernel herding. In UAI, 2010.
-
(2010)
UAI
-
-
Chen, Y.1
Welling, M.2
Smola, A.3
-
11
-
-
0036583160
-
A parallel mixture of SVMs for very large scale problems
-
Ronan Collobert, Samy Bengio, and Yoshua Bengio. A parallel mixture of SVMs for very large scale problems. Neural computation, 14(5):1105–1114, 2002.
-
(2002)
Neural Computation
, vol.14
, Issue.5
, pp. 1105-1114
-
-
Collobert, R.1
Bengio, S.2
Bengio, Y.3
-
13
-
-
84875650303
-
Bayesian inference and the parametric bootstrap
-
Bradley Efron. Bayesian inference and the parametric bootstrap. The annals of applied statistics, 6(4):1971, 2012.
-
(2012)
The Annals of Applied Statistics
, vol.6
, Issue.4
, pp. 1971
-
-
Efron, B.1
-
15
-
-
84897694817
-
Variance reduction techniques for gradient estimates in reinforcement learning
-
Evan Greensmith, Peter L Bartlett, and Jonathan Baxter. Variance reduction techniques for gradient estimates in reinforcement learning. Journal of Machine Learning Research, 5(Nov):1471–1530, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, Issue.Nov
, pp. 1471-1530
-
-
Greensmith, E.1
Bartlett, P.L.2
Baxter, J.3
-
16
-
-
84859477054
-
A kernel two-sample test
-
Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. A kernel two-sample test. The Journal of Machine Learning Research, 13(1):723–773, 2012.
-
(2012)
The Journal of Machine Learning Research
, vol.13
, Issue.1
, pp. 723-773
-
-
Gretton, A.1
Borgwardt, K.M.2
Rasch, M.J.3
Schölkopf, B.4
Smola, A.5
-
17
-
-
84898967883
-
On sampling from the gibbs distribution with random maximum a-posteriori perturbations
-
Tamir Hazan, Subhransu Maji, and Tommi Jaakkola. On sampling from the gibbs distribution with random maximum a-posteriori perturbations. In NIPS, pages 1268–1276, 2013.
-
(2013)
NIPS
, pp. 1268-1276
-
-
Hazan, T.1
Maji, S.2
Jaakkola, T.3
-
18
-
-
37549027256
-
Importance sampling via the estimated sampler
-
Masayuki Henmi, Ryo Yoshida, and Shinto Eguchi. Importance sampling via the estimated sampler. Biometrika, 94(4):985–991, 2007.
-
(2007)
Biometrika
, vol.94
, Issue.4
, pp. 985-991
-
-
Henmi, M.1
Yoshida, R.2
Eguchi, S.3
-
19
-
-
84901687683
-
The no-u-turn sampler: Adaptively setting path lengths in hamiltonian monte carlo
-
Matthew D Hoffman and Andrew Gelman. The no-u-turn sampler: adaptively setting path lengths in hamiltonian monte carlo. Journal of Machine Learning Research, 15 (1):1593–1623, 2014.
-
(2014)
Journal of Machine Learning Research
, vol.15
, Issue.1
, pp. 1593-1623
-
-
Hoffman, M.D.1
Gelman, A.2
-
20
-
-
84886052096
-
Optimally-weighted herding is bayesian quadrature
-
Ferenc Huszár and David Duvenaud. Optimally-weighted Herding is Bayesian quadrature. In UAI, 2012.
-
(2012)
UAI
-
-
Huszár, F.1
Duvenaud, D.2
-
21
-
-
84965146461
-
Toward minimax off-policy value estimation
-
Lihong Li, Rémi Munos, and Csaba Szepesvári. Toward minimax off-policy value estimation. In AISTATS, 2015.
-
(2015)
AISTATS
-
-
Li, L.1
Munos, R.2
Szepesvári, C.3
-
23
-
-
84965139754
-
Probabilistic variational bounds for graphical models
-
Qiang Liu, John W Fisher III, and Alexander T Ihler. Probabilistic variational bounds for graphical models. In NIPS, pages 1432–1440, 2015.
-
(2015)
NIPS
, pp. 1432-1440
-
-
Liu, Q.1
Fisher, J.W.2
Ihler, A.T.3
-
24
-
-
85045554292
-
A kernelized stein discrepancy for goodness-of-fit tests and model evaluation
-
Qiang Liu, Jason D Lee, and Michael I Jordan. A kernelized stein discrepancy for goodness-of-fit tests and model evaluation. In ICML, 2016.
-
(2016)
ICML
-
-
Liu, Q.1
Lee, J.D.2
Jordan, M.I.3
-
25
-
-
0033466420
-
Sequential importance sampling for nonparametric bayes models: The next generation
-
Steven N MacEachern, Merlise Clyde, and Jun S Liu. Sequential importance sampling for nonparametric Bayes models: The next generation. Canadian Journal of Statistics, 27(2):251–267, 1999.
-
(1999)
Canadian Journal of Statistics
, vol.27
, Issue.2
, pp. 251-267
-
-
MacEachern, S.N.1
Clyde, M.2
Liu, J.S.3
-
27
-
-
0029728306
-
The Ising/Potts model is not well suited to segmentation tasks
-
IEEE, IEEE
-
RD Morris, X Descombes, and J Zerubia. The Ising/Potts model is not well suited to segmentation tasks. In Digital Signal Processing Workshop Proceedings, 1996., IEEE, pages 263–266. IEEE, 1996.
-
(1996)
Digital Signal Processing Workshop Proceedings, 1996
, pp. 263-266
-
-
Morris, R.D.1
Descombes, X.2
Zerubia, J.3
-
28
-
-
0000273048
-
Annealed importance sampling
-
Radford M Neal. Annealed importance sampling. Statistics and Computing, 11(2):125–139, 2001.
-
(2001)
Statistics and Computing
, vol.11
, Issue.2
, pp. 125-139
-
-
Neal, R.M.1
-
29
-
-
0023168639
-
On control variate estimators
-
Barry L Nelson. On control variate estimators. Computers & Operations Research, 14(3):219–225, 1987.
-
(1987)
Computers & Operations Research
, vol.14
, Issue.3
, pp. 219-225
-
-
Nelson, B.L.1
-
30
-
-
77958588617
-
Estimating divergence functionals and the likelihood ratio by convex risk minimization
-
XuanLong Nguyen, Martin J Wainwright, Michael Jordan, et al. Estimating divergence functionals and the likelihood ratio by convex risk minimization. Information Theory, IEEE Transactions on, 56(11):5847–5861, 2010.
-
(2010)
Information Theory, IEEE Transactions on
, vol.56
, Issue.11
, pp. 5847-5861
-
-
Nguyen, X.1
Wainwright, M.J.2
Jordan, M.3
-
36
-
-
84856654560
-
Perturb-and-map random fields: Using discrete optimization to learn and sample from energy models
-
IEEE
-
George Papandreou and Alan L Yuille. Perturb-and-map random fields: Using discrete optimization to learn and sample from energy models. In ICCV, pages 193–200. IEEE, 2011.
-
(2011)
ICCV
, pp. 193-200
-
-
Papandreou, G.1
Yuille, A.L.2
-
37
-
-
84955506831
-
Black box variational inference
-
Rajesh Ranganath, Sean Gerrish, and David M Blei. Black box variational inference. In AISTATS, pages 814–822, 2014.
-
(2014)
AISTATS
, pp. 814-822
-
-
Ranganath, R.1
Gerrish, S.2
Blei, D.M.3
-
38
-
-
84969776493
-
Variational inference with normalizing flows
-
Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows. In ICML, 2015.
-
(2015)
ICML
-
-
Rezende, D.J.1
Mohamed, S.2
-
40
-
-
84969835291
-
Markov chain monte carlo and variational inference: Bridging the gap
-
Tim Salimans, Diederik P Kingma, and Max Welling. Markov chain Monte Carlo and variational inference: Bridging the gap. In ICML, 2015.
-
(2015)
ICML
-
-
Salimans, T.1
Kingma, D.P.2
Welling, M.3
-
43
-
-
85161964516
-
Direct importance estimation with model selection and its application to covariate shift adaptation
-
Masashi Sugiyama, Shinichi Nakajima, Hisashi Kashima, Paul V Buenau, and Motoaki Kawanabe. Direct importance estimation with model selection and its application to covariate shift adaptation. In NIPS, 2008.
-
(2008)
NIPS
-
-
Sugiyama, M.1
Nakajima, S.2
Kashima, H.3
Buenau, P.V.4
Kawanabe, M.5
-
45
-
-
65749118363
-
Graphical models, exponential families, and variational inference
-
Martin J Wainwright and Michael I Jordan. Graphical models, exponential families, and variational inference. Foundations and TrendsR in Machine Learning, 1(1-2): 1–305, 2008.
-
(2008)
Foundations and TrendsR in Machine Learning
, vol.1
, Issue.1-2
, pp. 1-305
-
-
Wainwright, M.J.1
Jordan, M.I.2
-
46
-
-
84899020608
-
Variance reduction for stochastic gradient optimization
-
Chong Wang, Xi Chen, Alex J Smola, and Eric P Xing. Variance reduction for stochastic gradient optimization. In Advances in Neural Information Processing Systems, pages 181–189, 2013.
-
(2013)
Advances in Neural Information Processing Systems
, pp. 181-189
-
-
Wang, C.1
Chen, X.2
Smola, A.J.3
Xing, E.P.4
-
47
-
-
80053452150
-
Bayesian learning via stochastic gradient langevin dynamics
-
Max Welling and Yee W Teh. Bayesian learning via stochastic gradient Langevin dynamics. In ICML, 2011.
-
(2011)
ICML
-
-
Welling, M.1
Teh, Y.W.2
-
48
-
-
84880919765
-
A novel adaptive importance sampling algorithm based on markov chain and low-discrepancy sequence
-
Xiukai Yuan, Zhenzhou Lu, Changcong Zhou, and Zhufeng Yue. A novel adaptive importance sampling algorithm based on markov chain and low-discrepancy sequence. Aerospace Science and Technology, 29(1):253–261, 2013.
-
(2013)
Aerospace Science and Technology
, vol.29
, Issue.1
, pp. 253-261
-
-
Yuan, X.1
Lu, Z.2
Zhou, C.3
Yue, Z.4
-
49
-
-
84965142446
-
Stochastic optimization with importance sampling
-
Peilin Zhao and Tong Zhang. Stochastic optimization with importance sampling. ICML, 2015.
-
(2015)
ICML
-
-
Zhao, P.1
Zhang, T.2
|