메뉴 건너뛰기




Volumn 2015-January, Issue , 2015, Pages 1432-1440

Probabilistic variational bounds for graphical models

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; INFORMATION SCIENCE; MONTE CARLO METHODS;

EID: 84965139754     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (13)

References (35)
  • 1
    • 57949085983 scopus 로고    scopus 로고
    • Curse-of-dimensionality revisited: Collapse of the particle filter in very large scale systems
    • Institute of Mathematical Statistics
    • T. Bengtsson, P. Bickel, and B. Li. Curse-of-dimensionality revisited: Collapse of the particle filter in very large scale systems. In Probability and statistics: Essays in honor of David A. Freedman, pages 316-334. Institute of Mathematical Statistics, 2008.
    • (2008) Probability and Statistics: Essays in Honor of David A. Freedman , pp. 316-334
    • Bengtsson, T.1    Bickel, P.2    Li, B.3
  • 2
    • 0035590196 scopus 로고    scopus 로고
    • Sampling algorithms for estimating the mean of bounded random variables
    • J. Cheng. Sampling algorithms for estimating the mean of bounded random variables. Computational Statistics, 16(1):1-23, 2001.
    • (2001) Computational Statistics , vol.16 , Issue.1 , pp. 1-23
    • Cheng, J.1
  • 3
    • 0001249662 scopus 로고    scopus 로고
    • AIS-BN: An adaptive importance sampling algorithm for evidential reasoning in large Bayesian networks
    • J. Cheng and M. Druzdzel. AIS-BN: An adaptive importance sampling algorithm for evidential reasoning in large Bayesian networks. Journal of Artificial Intelligence Research, 2000.
    • (2000) Journal of Artificial Intelligence Research
    • Cheng, J.1    Druzdzel, M.2
  • 4
    • 0031170063 scopus 로고    scopus 로고
    • An optimal approximation algorithm for Bayesian inference
    • P. Dagum and M. Luby. An optimal approximation algorithm for Bayesian inference. Artificial Intelligence, 93(1):1-27, 1997.
    • (1997) Artificial Intelligence , vol.93 , Issue.1 , pp. 1-27
    • Dagum, P.1    Luby, M.2
  • 7
    • 1642312636 scopus 로고    scopus 로고
    • Mini-buckets: A general scheme for bounded inference
    • R. Dechter and I. Rish. Mini-buckets: A general scheme for bounded inference. Journal of the ACM, 50(2):107-153, 2003.
    • (2003) Journal of the ACM , vol.50 , Issue.2 , pp. 107-153
    • Dechter, R.1    Rish, I.2
  • 8
    • 0007319555 scopus 로고
    • Weighing and integrating evidence for stochastic simulation in Bayesian networks
    • R. Fung and K. Chang. Weighing and integrating evidence for stochastic simulation in Bayesian networks. In UAI, 1990.
    • (1990) UAI
    • Fung, R.1    Chang, K.2
  • 9
    • 84862295756 scopus 로고    scopus 로고
    • Approximate inference using conditional entropy decompositions
    • A. Globerson and T. Jaakkola. Approximate inference using conditional entropy decompositions. In UAI, pages 130-138, 2007.
    • (2007) UAI , pp. 130-138
    • Globerson, A.1    Jaakkola, T.2
  • 11
    • 84896060975 scopus 로고    scopus 로고
    • Sampling-based lower bounds for counting queries
    • V. Gogate and R. Dechter. Sampling-based lower bounds for counting queries. Intelligenza Artificiale, 5(2):171-188, 2011.
    • (2011) Intelligenza Artificiale , vol.5 , Issue.2 , pp. 171-188
    • Gogate, V.1    Dechter, R.2
  • 12
    • 84867112240 scopus 로고    scopus 로고
    • On the partition function and random maximum a-posteriori perturbations
    • T. Hazan and T. Jaakkola. On the partition function and random maximum a-posteriori perturbations. In ICML, 2012.
    • (2012) ICML
    • Hazan, T.1    Jaakkola, T.2
  • 17
    • 80053459600 scopus 로고    scopus 로고
    • Bounding the partition function using Hölder's inequality
    • Q. Liu and A. Ihler. Bounding the partition function using Hölder's inequality. In ICML, 2011.
    • (2011) ICML
    • Liu, Q.1    Ihler, A.2
  • 18
    • 77952699200 scopus 로고    scopus 로고
    • Join-graph propagation algorithms
    • R. Mateescu, K. Kask, V. Gogate, and R. Dechter. Join-graph propagation algorithms. JAIR, 37(1):279-328, 2010.
    • (2010) JAIR , vol.37 , Issue.1 , pp. 279-328
    • Mateescu, R.1    Kask, K.2    Gogate, V.3    Dechter, R.4
  • 19
    • 84898061133 scopus 로고    scopus 로고
    • Empirical Bernstein bounds and sample-variance penalization
    • A. Maurer and M. Pontil. Empirical Bernstein bounds and sample-variance penalization. In COLT, pages 115-124, 2009.
    • (2009) COLT , pp. 115-124
    • Maurer, A.1    Pontil, M.2
  • 21
    • 0001008381 scopus 로고
    • Adaptive importance sampling in Monte Carlo integration
    • M.-S. Oh and J. Berger. Adaptive importance sampling in Monte Carlo integration. J. Stat. Comput. Simul., 41(3-4):143-168, 1992.
    • (1992) J. Stat. Comput. Simul. , vol.41 , Issue.3-4 , pp. 143-168
    • Oh, M.-S.1    Berger, J.2
  • 22
    • 84919794589 scopus 로고    scopus 로고
    • On measure concentration of random maximum a-posteriori perturbations
    • F. Orabona, T. Hazan, A. Sarwate, and T. Jaakkola. On measure concentration of random maximum a-posteriori perturbations. In ICML, 2014.
    • (2014) ICML
    • Orabona, F.1    Hazan, T.2    Sarwate, A.3    Jaakkola, T.4
  • 23
    • 84856654560 scopus 로고    scopus 로고
    • Perturb-and-map random fields: Using discrete optimization to learn and sample from energy models
    • G. Papandreou and A. Yuille. Perturb-and-map random fields: Using discrete optimization to learn and sample from energy models. In ICCV, 2011.
    • (2011) ICCV
    • Papandreou, G.1    Yuille, A.2
  • 24
    • 84877789103 scopus 로고    scopus 로고
    • The bethe partition function of log-supermodular graphical models
    • N. Ruozzi. The bethe partition function of log-supermodular graphical models. In NIPS, 2012.
    • (2012) NIPS
    • Ruozzi, N.1
  • 25
    • 84969835291 scopus 로고    scopus 로고
    • Markov chain Monte Carlo and variational inference: Bridging the gap
    • T. Salimans, D. Kingma, and M. Welling. Markov chain Monte Carlo and variational inference: Bridging the gap. In ICML, 2015.
    • (2015) ICML
    • Salimans, T.1    Kingma, D.2    Welling, M.3
  • 26
    • 0001203638 scopus 로고
    • Simulation approaches to general probabilistic inference on belief networks
    • R. Shachter and M. Peot. Simulation approaches to general probabilistic inference on belief networks. In UAI, 1990.
    • (1990) UAI
    • Shachter, R.1    Peot, M.2
  • 27
    • 48349119079 scopus 로고    scopus 로고
    • Loop series and bethe variational bounds in attractive graphical models
    • E. Sudderth, M. Wainwright, and A. Willsky. Loop series and bethe variational bounds in attractive graphical models. In NIPS, pages 1425-1432, 2007.
    • (2007) NIPS , pp. 1425-1432
    • Sudderth, E.1    Wainwright, M.2    Willsky, A.3
  • 28
    • 33748685798 scopus 로고    scopus 로고
    • Estimating the wrong graphical model: Benefits in the computation-limited setting
    • M. Wainwright. Estimating the wrong graphical model: Benefits in the computation-limited setting. JMLR, 7:1829-1859, 2006.
    • (2006) JMLR , vol.7 , pp. 1829-1859
    • Wainwright, M.1
  • 29
    • 65749118363 scopus 로고    scopus 로고
    • Graphical models, exponential families, and variational inference
    • M. Wainwright and M. Jordan. Graphical models, exponential families, and variational inference. Foundations and Trends in Machine Learning, 1(1-2):1-305, 2008.
    • (2008) Foundations and Trends in Machine Learning , vol.1 , Issue.1-2 , pp. 1-305
    • Wainwright, M.1    Jordan, M.2
  • 30
    • 23744515371 scopus 로고    scopus 로고
    • A new class of upper bounds on the log partition function
    • M. Wainwright, T. Jaakkola, and A. Willsky. A new class of upper bounds on the log partition function. IEEE Trans. Information Theory, 51(7):2313-2335, 2005.
    • (2005) IEEE Trans. Information Theory , vol.51 , Issue.7 , pp. 2313-2335
    • Wainwright, M.1    Jaakkola, T.2    Willsky, A.3
  • 31
    • 80053212991 scopus 로고    scopus 로고
    • Importance sampling via variational optimization
    • Y. Wexler and D. Geiger. Importance sampling via variational optimization. In UAI, 2007.
    • (2007) UAI
    • Wexler, Y.1    Geiger, D.2
  • 32
    • 16244413498 scopus 로고    scopus 로고
    • An importance sampling algorithm based on evidence pre-propagation
    • C. Yuan and M. Druzdzel. An importance sampling algorithm based on evidence pre-propagation. In UAI, pages 624-631, 2002.
    • (2002) UAI , pp. 624-631
    • Yuan, C.1    Druzdzel, M.2
  • 33
    • 33748255514 scopus 로고    scopus 로고
    • Importance sampling algorithms for Bayesian networks: Principles and performance
    • C. Yuan and M. Druzdzel. Importance sampling algorithms for Bayesian networks: Principles and performance. Mathematical and Computer Modeling, 43(9):1189-1207, 2006.
    • (2006) Mathematical and Computer Modeling , vol.43 , Issue.9 , pp. 1189-1207
    • Yuan, C.1    Druzdzel, M.2
  • 34
    • 84965118537 scopus 로고    scopus 로고
    • Generalized evidence pre-propagated importance sampling for hybrid Bayesian networks
    • C. Yuan and M. Druzdzel. Generalized evidence pre-propagated importance sampling for hybrid Bayesian networks. In AAAI, volume 7, pages 1296-1302, 2007.
    • (2007) AAAI , vol.7 , pp. 1296-1302
    • Yuan, C.1    Druzdzel, M.2
  • 35
    • 34648834540 scopus 로고    scopus 로고
    • Theoretical analysis and practical insights on importance sampling in Bayesian networks
    • C. Yuan and M. Druzdzel. Theoretical analysis and practical insights on importance sampling in Bayesian networks. International Journal of Approximate Reasoning, 46(2):320-333, 2007.
    • (2007) International Journal of Approximate Reasoning , vol.46 , Issue.2 , pp. 320-333
    • Yuan, C.1    Druzdzel, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.