-
1
-
-
57949085983
-
Curse-of-dimensionality revisited: Collapse of the particle filter in very large scale systems
-
Institute of Mathematical Statistics
-
T. Bengtsson, P. Bickel, and B. Li. Curse-of-dimensionality revisited: Collapse of the particle filter in very large scale systems. In Probability and statistics: Essays in honor of David A. Freedman, pages 316-334. Institute of Mathematical Statistics, 2008.
-
(2008)
Probability and Statistics: Essays in Honor of David A. Freedman
, pp. 316-334
-
-
Bengtsson, T.1
Bickel, P.2
Li, B.3
-
2
-
-
0035590196
-
Sampling algorithms for estimating the mean of bounded random variables
-
J. Cheng. Sampling algorithms for estimating the mean of bounded random variables. Computational Statistics, 16(1):1-23, 2001.
-
(2001)
Computational Statistics
, vol.16
, Issue.1
, pp. 1-23
-
-
Cheng, J.1
-
3
-
-
0001249662
-
AIS-BN: An adaptive importance sampling algorithm for evidential reasoning in large Bayesian networks
-
J. Cheng and M. Druzdzel. AIS-BN: An adaptive importance sampling algorithm for evidential reasoning in large Bayesian networks. Journal of Artificial Intelligence Research, 2000.
-
(2000)
Journal of Artificial Intelligence Research
-
-
Cheng, J.1
Druzdzel, M.2
-
4
-
-
0031170063
-
An optimal approximation algorithm for Bayesian inference
-
P. Dagum and M. Luby. An optimal approximation algorithm for Bayesian inference. Artificial Intelligence, 93(1):1-27, 1997.
-
(1997)
Artificial Intelligence
, vol.93
, Issue.1
, pp. 1-27
-
-
Dagum, P.1
Luby, M.2
-
5
-
-
0034538249
-
An optimal algorithm for Monte Carlo estimation
-
P. Dagum, R. Karp, M. Luby, and S. Ross. An optimal algorithm for Monte Carlo estimation. SIAM Journal on Computing, 29:1484-1496, 2000.
-
(2000)
SIAM Journal on Computing
, vol.29
, pp. 1484-1496
-
-
Dagum, P.1
Karp, R.2
Luby, M.3
Ross, S.4
-
7
-
-
1642312636
-
Mini-buckets: A general scheme for bounded inference
-
R. Dechter and I. Rish. Mini-buckets: A general scheme for bounded inference. Journal of the ACM, 50(2):107-153, 2003.
-
(2003)
Journal of the ACM
, vol.50
, Issue.2
, pp. 107-153
-
-
Dechter, R.1
Rish, I.2
-
8
-
-
0007319555
-
Weighing and integrating evidence for stochastic simulation in Bayesian networks
-
R. Fung and K. Chang. Weighing and integrating evidence for stochastic simulation in Bayesian networks. In UAI, 1990.
-
(1990)
UAI
-
-
Fung, R.1
Chang, K.2
-
9
-
-
84862295756
-
Approximate inference using conditional entropy decompositions
-
A. Globerson and T. Jaakkola. Approximate inference using conditional entropy decompositions. In UAI, pages 130-138, 2007.
-
(2007)
UAI
, pp. 130-138
-
-
Globerson, A.1
Jaakkola, T.2
-
11
-
-
84896060975
-
Sampling-based lower bounds for counting queries
-
V. Gogate and R. Dechter. Sampling-based lower bounds for counting queries. Intelligenza Artificiale, 5(2):171-188, 2011.
-
(2011)
Intelligenza Artificiale
, vol.5
, Issue.2
, pp. 171-188
-
-
Gogate, V.1
Dechter, R.2
-
12
-
-
84867112240
-
On the partition function and random maximum a-posteriori perturbations
-
T. Hazan and T. Jaakkola. On the partition function and random maximum a-posteriori perturbations. In ICML, 2012.
-
(2012)
ICML
-
-
Hazan, T.1
Jaakkola, T.2
-
17
-
-
80053459600
-
Bounding the partition function using Hölder's inequality
-
Q. Liu and A. Ihler. Bounding the partition function using Hölder's inequality. In ICML, 2011.
-
(2011)
ICML
-
-
Liu, Q.1
Ihler, A.2
-
18
-
-
77952699200
-
Join-graph propagation algorithms
-
R. Mateescu, K. Kask, V. Gogate, and R. Dechter. Join-graph propagation algorithms. JAIR, 37(1):279-328, 2010.
-
(2010)
JAIR
, vol.37
, Issue.1
, pp. 279-328
-
-
Mateescu, R.1
Kask, K.2
Gogate, V.3
Dechter, R.4
-
19
-
-
84898061133
-
Empirical Bernstein bounds and sample-variance penalization
-
A. Maurer and M. Pontil. Empirical Bernstein bounds and sample-variance penalization. In COLT, pages 115-124, 2009.
-
(2009)
COLT
, pp. 115-124
-
-
Maurer, A.1
Pontil, M.2
-
21
-
-
0001008381
-
Adaptive importance sampling in Monte Carlo integration
-
M.-S. Oh and J. Berger. Adaptive importance sampling in Monte Carlo integration. J. Stat. Comput. Simul., 41(3-4):143-168, 1992.
-
(1992)
J. Stat. Comput. Simul.
, vol.41
, Issue.3-4
, pp. 143-168
-
-
Oh, M.-S.1
Berger, J.2
-
22
-
-
84919794589
-
On measure concentration of random maximum a-posteriori perturbations
-
F. Orabona, T. Hazan, A. Sarwate, and T. Jaakkola. On measure concentration of random maximum a-posteriori perturbations. In ICML, 2014.
-
(2014)
ICML
-
-
Orabona, F.1
Hazan, T.2
Sarwate, A.3
Jaakkola, T.4
-
23
-
-
84856654560
-
Perturb-and-map random fields: Using discrete optimization to learn and sample from energy models
-
G. Papandreou and A. Yuille. Perturb-and-map random fields: Using discrete optimization to learn and sample from energy models. In ICCV, 2011.
-
(2011)
ICCV
-
-
Papandreou, G.1
Yuille, A.2
-
24
-
-
84877789103
-
The bethe partition function of log-supermodular graphical models
-
N. Ruozzi. The bethe partition function of log-supermodular graphical models. In NIPS, 2012.
-
(2012)
NIPS
-
-
Ruozzi, N.1
-
25
-
-
84969835291
-
Markov chain Monte Carlo and variational inference: Bridging the gap
-
T. Salimans, D. Kingma, and M. Welling. Markov chain Monte Carlo and variational inference: Bridging the gap. In ICML, 2015.
-
(2015)
ICML
-
-
Salimans, T.1
Kingma, D.2
Welling, M.3
-
26
-
-
0001203638
-
Simulation approaches to general probabilistic inference on belief networks
-
R. Shachter and M. Peot. Simulation approaches to general probabilistic inference on belief networks. In UAI, 1990.
-
(1990)
UAI
-
-
Shachter, R.1
Peot, M.2
-
27
-
-
48349119079
-
Loop series and bethe variational bounds in attractive graphical models
-
E. Sudderth, M. Wainwright, and A. Willsky. Loop series and bethe variational bounds in attractive graphical models. In NIPS, pages 1425-1432, 2007.
-
(2007)
NIPS
, pp. 1425-1432
-
-
Sudderth, E.1
Wainwright, M.2
Willsky, A.3
-
28
-
-
33748685798
-
Estimating the wrong graphical model: Benefits in the computation-limited setting
-
M. Wainwright. Estimating the wrong graphical model: Benefits in the computation-limited setting. JMLR, 7:1829-1859, 2006.
-
(2006)
JMLR
, vol.7
, pp. 1829-1859
-
-
Wainwright, M.1
-
29
-
-
65749118363
-
Graphical models, exponential families, and variational inference
-
M. Wainwright and M. Jordan. Graphical models, exponential families, and variational inference. Foundations and Trends in Machine Learning, 1(1-2):1-305, 2008.
-
(2008)
Foundations and Trends in Machine Learning
, vol.1
, Issue.1-2
, pp. 1-305
-
-
Wainwright, M.1
Jordan, M.2
-
30
-
-
23744515371
-
A new class of upper bounds on the log partition function
-
M. Wainwright, T. Jaakkola, and A. Willsky. A new class of upper bounds on the log partition function. IEEE Trans. Information Theory, 51(7):2313-2335, 2005.
-
(2005)
IEEE Trans. Information Theory
, vol.51
, Issue.7
, pp. 2313-2335
-
-
Wainwright, M.1
Jaakkola, T.2
Willsky, A.3
-
31
-
-
80053212991
-
Importance sampling via variational optimization
-
Y. Wexler and D. Geiger. Importance sampling via variational optimization. In UAI, 2007.
-
(2007)
UAI
-
-
Wexler, Y.1
Geiger, D.2
-
32
-
-
16244413498
-
An importance sampling algorithm based on evidence pre-propagation
-
C. Yuan and M. Druzdzel. An importance sampling algorithm based on evidence pre-propagation. In UAI, pages 624-631, 2002.
-
(2002)
UAI
, pp. 624-631
-
-
Yuan, C.1
Druzdzel, M.2
-
33
-
-
33748255514
-
Importance sampling algorithms for Bayesian networks: Principles and performance
-
C. Yuan and M. Druzdzel. Importance sampling algorithms for Bayesian networks: Principles and performance. Mathematical and Computer Modeling, 43(9):1189-1207, 2006.
-
(2006)
Mathematical and Computer Modeling
, vol.43
, Issue.9
, pp. 1189-1207
-
-
Yuan, C.1
Druzdzel, M.2
-
34
-
-
84965118537
-
Generalized evidence pre-propagated importance sampling for hybrid Bayesian networks
-
C. Yuan and M. Druzdzel. Generalized evidence pre-propagated importance sampling for hybrid Bayesian networks. In AAAI, volume 7, pages 1296-1302, 2007.
-
(2007)
AAAI
, vol.7
, pp. 1296-1302
-
-
Yuan, C.1
Druzdzel, M.2
-
35
-
-
34648834540
-
Theoretical analysis and practical insights on importance sampling in Bayesian networks
-
C. Yuan and M. Druzdzel. Theoretical analysis and practical insights on importance sampling in Bayesian networks. International Journal of Approximate Reasoning, 46(2):320-333, 2007.
-
(2007)
International Journal of Approximate Reasoning
, vol.46
, Issue.2
, pp. 320-333
-
-
Yuan, C.1
Druzdzel, M.2
|