메뉴 건너뛰기




Volumn 26, Issue 1-2, 2016, Pages 29-47

Noisy Monte Carlo: convergence of Markov chains with approximate transition kernels

Author keywords

Intractable likelihoods; Markov chain Monte Carlo; Pseudo marginal Monte Carlo

Indexed keywords


EID: 84953346435     PISSN: 09603174     EISSN: 15731375     Source Type: Journal    
DOI: 10.1007/s11222-014-9521-x     Document Type: Article
Times cited : (134)

References (37)
  • 2
    • 60149103563 scopus 로고    scopus 로고
    • The pseudo-marginal approach for efficient Monte-Carlo computations
    • Andrieu, C., Roberts, G.: The pseudo-marginal approach for efficient Monte-Carlo computations. Ann. Stat. 37(2), 697–725 (2009)
    • (2009) Ann. Stat. , vol.37 , Issue.2 , pp. 697-725
    • Andrieu, C.1    Roberts, G.2
  • 3
    • 84925480490 scopus 로고    scopus 로고
    • Convergence properties of pseudo-marginal Markov chain Monte Carlo algorithms
    • Andrieu, C., Vihola, M.: Convergence properties of pseudo-marginal Markov chain Monte Carlo algorithms. Preprint arXiv:1210.1484 (2012).
    • (2012) Preprint arXiv , vol.1210 , pp. 1484
    • Andrieu, C.1    Vihola, M.2
  • 5
    • 0043210659 scopus 로고    scopus 로고
    • Estimation of population growth or decline in genetically monitored populations
    • Beaumont, M.A.: Estimation of population growth or decline in genetically monitored populations. Genetics 164, 1139–1160 (2003)
    • (2003) Genetics , vol.164 , pp. 1139-1160
    • Beaumont, M.A.1
  • 6
    • 0000913755 scopus 로고
    • Spatial Interaction and the statistical analysis of lattice systems
    • Besag, J.E.: Spatial Interaction and the statistical analysis of lattice systems. J. R. Stat. Soc. Ser. B 36, 192–236 (1974)
    • (1974) J. R. Stat. Soc. Ser. B , vol.36 , pp. 192-236
    • Besag, J.E.1
  • 7
    • 84882309474 scopus 로고    scopus 로고
    • The tradeoffs of large-scale learning
    • Sra S, Nowozin S, Wright SJ, (eds), MIT Press, Cambridge
    • Bottou, L., Bousquet, O.: The tradeoffs of large-scale learning. In: Sra, S., Nowozin, S., Wright, S.J. (eds.) Optimization for Machine Learning, pp. 351–368. MIT Press, Cambridge (2011)
    • (2011) Optimization for Machine Learning , pp. 351-368
    • Bottou, L.1    Bousquet, O.2
  • 9
    • 79451473207 scopus 로고    scopus 로고
    • Bayesian inference for exponential random graph models
    • Caimo, A., Friel, N.: Bayesian inference for exponential random graph models. Soc. Netw. 33, 41–55 (2011)
    • (2011) Soc. Netw. , vol.33 , pp. 41-55
    • Caimo, A.1    Friel, N.2
  • 10
    • 84861604276 scopus 로고    scopus 로고
    • Sparse regression learning by aggregation and Langevin
    • Dalalyan, A., Tsybakov, A.B.: Sparse regression learning by aggregation and Langevin. J. Comput. Syst. Sci. 78(5), 1423–1443 (2012)
    • (2012) J. Comput. Syst. Sci. , vol.78 , Issue.5 , pp. 1423-1443
    • Dalalyan, A.1    Tsybakov, A.B.2
  • 11
    • 84879093469 scopus 로고    scopus 로고
    • Regular perturbation of $$V$$V-geometrically ergodic Markov chains
    • Ferré, D., Hervé, L., Ledoux, J.: Regular perturbation of $$V$$V-geometrically ergodic Markov chains. J. Appl. Probab. 50(1), 184–194 (2013)
    • (2013) J. Appl. Probab , vol.50 , Issue.1 , pp. 184-194
    • Ferré, D.1    Hervé, L.2    Ledoux, J.3
  • 12
    • 1842486833 scopus 로고    scopus 로고
    • Likelihood estimation and inference for the autologistic model
    • Friel, N., Pettitt, A.N.: Likelihood estimation and inference for the autologistic model. J. Comput. Graph. Stat. 13, 232–246 (2004)
    • (2004) J. Comput. Graph. Stat. , vol.13 , pp. 232-246
    • Friel, N.1    Pettitt, A.N.2
  • 13
    • 77950662970 scopus 로고    scopus 로고
    • Bayesian inference in hidden Markov random fields for binary data defined on large lattices
    • Friel, N., Pettitt, A.N., Reeves, R., Wit, E.: Bayesian inference in hidden Markov random fields for binary data defined on large lattices. J. Comput. Graph. Stat. 18, 243–261 (2009)
    • (2009) J. Comput. Graph. Stat. , vol.18 , pp. 243-261
    • Friel, N.1    Pettitt, A.N.2    Reeves, R.3    Wit, E.4
  • 14
    • 34548539907 scopus 로고    scopus 로고
    • Recursive computing and simulation-free inference for general factorizable models
    • Friel, N., Rue, H.: Recursive computing and simulation-free inference for general factorizable models. Biometrika 94, 661–672 (2007)
    • (2007) Biometrika , vol.94 , pp. 661-672
    • Friel, N.1    Rue, H.2
  • 15
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
    • Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984)
    • (1984) IEEE Trans. Pattern Anal. Mach. Intell. , vol.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 16
  • 17
    • 79952295497 scopus 로고    scopus 로고
    • Riemann manifold Langevin and Hamiltoian Monte Carlo methods (with discussion)
    • Girolami, M., Calderhead, B.: Riemann manifold Langevin and Hamiltoian Monte Carlo methods (with discussion). J. R. Stat. Soc. Ser. B 73, 123–214 (2011)
    • (2011) J. R. Stat. Soc. Ser. B , vol.73 , pp. 123-214
    • Girolami, M.1    Calderhead, B.2
  • 18
    • 0004236492 scopus 로고    scopus 로고
    • Johns Hopkins University Press, Baltimore
    • Golub, G., Loan, C.V.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)
    • (1996) Matrix Computations
    • Golub, G.1    Loan, C.V.2
  • 21
    • 84953354542 scopus 로고    scopus 로고
    • An auxiliary variables Metropolis–Hastings algorithm for sampling from distributions with intractable normalizing constants, Technical report
    • Liang, F. Jin, I.-H.: An auxiliary variables Metropolis–Hastings algorithm for sampling from distributions with intractable normalizing constants. Technical report (2011)
    • (2011) Jin, I.-H.
    • Liang, F.1
  • 22
    • 84861108073 scopus 로고    scopus 로고
    • Approximate Bayesian computational methods
    • Marin, J.-M., Pudlo, P., Robert, C.P., Ryder, R.J.: Approximate Bayesian computational methods. Stat. Comput. 22(6), 1167–1180 (2012)
    • (2012) Stat. Comput. , vol.22 , Issue.6 , pp. 1167-1180
    • Marin, J.-M.1    Pudlo, P.2    Robert, C.P.3    Ryder, R.J.4
  • 24
    • 27944497396 scopus 로고    scopus 로고
    • Sensitivity and convergence of uniformly ergodic Markov chains
    • Mitrophanov, A.Y.: Sensitivity and convergence of uniformly ergodic Markov chains. J. Appl. Probab. 42, 1003–1014 (2005)
    • (2005) J. Appl. Probab. , vol.42 , pp. 1003-1014
    • Mitrophanov, A.Y.1
  • 25
    • 33745612435 scopus 로고    scopus 로고
    • An efficient Markov chain Monte-Carlo method for distributions with intractable normalizing constants
    • Møller, J., Pettitt, A.N., Reeves, R., Berthelsen, K.K.: An efficient Markov chain Monte-Carlo method for distributions with intractable normalizing constants. Biometrika 93, 451–458 (2006)
    • (2006) Biometrika , vol.93 , pp. 451-458
    • Møller, J.1    Pettitt, A.N.2    Reeves, R.3    Berthelsen, K.K.4
  • 27
    • 84953355912 scopus 로고    scopus 로고
    • Coupled MCMC with a randomized acceptance probability
    • Nicholls, G. K., Fox, C., Watt, A.M.: Coupled MCMC with a randomized acceptance probability. Preprint arXiv:1205.6857 (2012)
    • (2012) Preprint arXiv , vol.1205 , pp. 6857
    • Nicholls, G.K.1    Fox, C.2    Watt, A.M.3
  • 28
    • 0005193926 scopus 로고    scopus 로고
    • Exactly sampling with coupled Markov chains and applications to statistical mechanics
    • Propp, J., Wilson, D.: Exactly sampling with coupled Markov chains and applications to statistical mechanics. Random Struct. Algorithms 9, 223–252 (1996)
    • (1996) Random Struct. Algorithms , vol.9 , pp. 223-252
    • Propp, J.1    Wilson, D.2
  • 29
    • 24944590473 scopus 로고    scopus 로고
    • Efficient recursions for general factorisable models
    • Reeves, R., Pettitt, A.N.: Efficient recursions for general factorisable models. Biometrika 91, 751–757 (2004)
    • (2004) Biometrika , vol.91 , pp. 751-757
    • Reeves, R.1    Pettitt, A.N.2
  • 30
    • 0000016172 scopus 로고
    • A stochastic approximation method
    • Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22(3), 400–407 (1951)
    • (1951) Ann. Math. Stat. , vol.22 , Issue.3 , pp. 400-407
    • Robbins, H.1    Monro, S.2
  • 31
    • 15244341043 scopus 로고    scopus 로고
    • Langevin diffusions and Metropolis–Hastings algorithms
    • Roberts, G.O., Stramer, O.: Langevin diffusions and Metropolis–Hastings algorithms. Methodol. Comput. Appl. Probab. 4, 337–357 (2002)
    • (2002) Methodol. Comput. Appl. Probab. , vol.4 , pp. 337-357
    • Roberts, G.O.1    Stramer, O.2
  • 32
    • 85132364916 scopus 로고    scopus 로고
    • Exponential convergence of Langevin distributions and their discrete approximations
    • Roberts, G.O., Tweedie, R.L.: Exponential convergence of Langevin distributions and their discrete approximations. Bernoulli 2(4), 341–363 (1996a)
    • (1996) Bernoulli , vol.2 , Issue.4 , pp. 341-363
    • Roberts, G.O.1    Tweedie, R.L.2
  • 33
    • 33746388444 scopus 로고    scopus 로고
    • Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithm
    • Roberts, G.O., Tweedie, R.L.: Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithm. Biometrika 83(1), 95–110 (1996b)
    • (1996) Biometrika , vol.83 , Issue.1 , pp. 95-110
    • Roberts, G.O.1    Tweedie, R.L.2
  • 34
    • 34147137805 scopus 로고    scopus 로고
    • An introduction to exponential random graph models for social networks
    • Robins, G., Pattison, P., Kalish, Y., Lusher, D.: An introduction to exponential random graph models for social networks. Soc. Netw. 29(2), 169–348 (2007)
    • (2007) Soc. Netw. , vol.29 , Issue.2 , pp. 169-348
    • Robins, G.1    Pattison, P.2    Kalish, Y.3    Lusher, D.4
  • 35
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 58(1), 267–288 (1996)
    • (1996) J. R. Stat. Soc. Ser. B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 36
    • 0021518106 scopus 로고
    • A theory of the learnable
    • Valiant, L.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)
    • (1984) Commun. ACM , vol.27 , Issue.11 , pp. 1134-1142
    • Valiant, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.