메뉴 건너뛰기




Volumn 1, Issue , 2018, Pages 2227-2237

Deep contextualized word representations

Author keywords

[No Author keywords available]

Indexed keywords

SEMANTICS; SENTIMENT ANALYSIS;

EID: 85083491761     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (9708)

References (61)
  • 2
    • 85040561636 scopus 로고    scopus 로고
    • What do neural machine translation models learn about morphology?
    • Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Hassan Sajjad, and James R. Glass. 2017. What do neural machine translation models learn about morphology? In ACL.
    • (2017) ACL
    • Belinkov, Y.1    Durrani, N.2    Dalvi, F.3    Sajjad, H.4    Glass, J.R.5
  • 3
    • 85031013784 scopus 로고    scopus 로고
    • Enriching word vectors with subword information
    • Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching word vectors with subword information. TACL 5:135-146.
    • (2017) TACL , vol.5 , pp. 135-146
    • Bojanowski, P.1    Grave, E.2    Joulin, A.3    Mikolov, T.4
  • 5
    • 84910091099 scopus 로고    scopus 로고
    • One billion word benchmark for measuring progress in statistical language modeling
    • Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp Koehn, and Tony Robinson. 2014. One billion word benchmark for measuring progress in statistical language modeling. In INTERSPEECH.
    • (2014) TERSPEECH
    • Chelba, C.1    Mikolov, T.2    Schuster, M.3    Ge, Q.4    Brants, T.5    Koehn, P.6    Robinson, T.7
  • 6
  • 7
    • 85016097618 scopus 로고    scopus 로고
    • Named entity recognition with bidirectional LSTM-CNNs
    • Jason Chiu and Eric Nichols. 2016. Named entity recognition with bidirectional LSTM-CNNs. In TACL.
    • (2016) TACL
    • Chiu, J.1    Nichols, E.2
  • 8
    • 85097641926 scopus 로고    scopus 로고
    • On the properties of neural machine translation: Encoder-decoder approaches
    • Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. 2014. On the properties of neural machine translation: Encoder-decoder approaches. In SSST@EMNLP.
    • (2014) SSST@EMNLP
    • Cho, K.1    Van Merrienboer, B.2    Bahdanau, D.3    Bengio, Y.4
  • 10
    • 85072831448 scopus 로고    scopus 로고
    • Deep reinforcement learning for mention-ranking coreference models
    • Kevin Clark and Christopher D. Manning. 2016. Deep reinforcement learning for mention-ranking coreference models. In EMNLP.
    • (2016) EMNLP
    • Clark, K.1    Manning, C.D.2
  • 12
    • 84965138788 scopus 로고    scopus 로고
    • Semisupervised sequence learning
    • Andrew M. Dai and Quoc V. Le. 2015. Semisupervised sequence learning. In NIPS.
    • (2015) NIPS
    • Dai, A.M.1    Le, Q.V.2
  • 13
    • 84926307308 scopus 로고    scopus 로고
    • Easy victories and uphill battles in coreference resolution
    • Greg Durrett and Dan Klein. 2013. Easy victories and uphill battles in coreference resolution. In EMNLP.
    • (2013) EMNLP
    • Durrett, G.1    Klein, D.2
  • 14
    • 85019171807 scopus 로고    scopus 로고
    • A theoretically grounded application of dropout in recurrent neural networks
    • Yarin Gal and Zoubin Ghahramani. 2016. A theoretically grounded application of dropout in recurrent neural networks. In NIPS.
    • (2016) NIPS
    • Gal, Y.1    Ghahramani, Z.2
  • 15
    • 85083953492 scopus 로고    scopus 로고
    • Natural language inference over interaction space
    • Yichen Gong, Heng Luo, and Jian Zhang. 2018. Natural language inference over interaction space. In ICLR.
    • (2018) ICLR
    • Gong, Y.1    Luo, H.2    Zhang, J.3
  • 16
    • 85073150695 scopus 로고    scopus 로고
    • A joint many-Task model: Growing a neural network for multiple nlp tasks
    • Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsuruoka, and Richard Socher. 2017. A joint many-Task model: Growing a neural network for multiple nlp tasks. In EMNLP 2017.
    • (2017) EMNLP , vol.2017
    • Hashimoto, K.1    Xiong, C.2    Tsuruoka, Y.3    Socher, R.4
  • 17
    • 85040937906 scopus 로고    scopus 로고
    • Deep semantic role labeling: What works and what's next
    • Luheng He, Kenton Lee, Mike Lewis, and Luke S. Zettlemoyer. 2017. Deep semantic role labeling: What works and what's next. In ACL.
    • (2017) ACL
    • He, L.1    Lee, K.2    Lewis, M.3    Zettlemoyer, L.S.4
  • 19
    • 85011874687 scopus 로고    scopus 로고
    • Embeddings for word sense disambiguation: An evaluation study
    • Ignacio Iacobacci, Mohammad Taher Pilehvar, and Roberto Navigli. 2016. Embeddings for word sense disambiguation: An evaluation study. In ACL.
    • (2016) ACL
    • Iacobacci, I.1    Taher Pilehvar, M.2    Navigli, R.3
  • 21
    • 84969972527 scopus 로고    scopus 로고
    • An empirical exploration of recurrent network architectures
    • Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. 2015. An empirical exploration of recurrent network architectures. In ICML.
    • (2015) ICML
    • Jozefowicz, R.1    Zaremba, W.2    Sutskever, I.3
  • 22
    • 84996482260 scopus 로고    scopus 로고
    • Character-Aware neural language models
    • Yoon Kim, Yacine Jernite, David Sontag, and AlexanderMRush. 2015. Character-Aware neural language models. In AAAI 2016.
    • (2015) AAAI , vol.2016
    • Kim, Y.1    Jernite, Y.2    Sontag, D.3    Rush, A.M.4
  • 23
    • 85083951076 scopus 로고    scopus 로고
    • Adam: A method for stochastic optimization
    • Diederik P. Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In ICLR.
    • (2015) ICLR
    • Kingma, D.P.1    Ba, J.2
  • 25
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • John D. Lafferty, Andrew McCallum, and Fernando Pereira. 2001. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML.
    • (2001) ICML
    • Lafferty, J.D.1    McCallum, A.2    Pereira, F.3
  • 27
    • 85073172227 scopus 로고    scopus 로고
    • End-To-end neural coreference resolution
    • Kenton Lee, Luheng He, Mike Lewis, and Luke S. Zettlemoyer. 2017. End-To-end neural coreference resolution. In EMNLP.
    • (2017) EMNLP
    • Lee, K.1    He, L.2    Lewis, M.3    Zettlemoyer, L.S.4
  • 28
    • 85049040703 scopus 로고    scopus 로고
    • Finding function in form: Compositional character models for open vocabulary word representation
    • Wang Ling, Chris Dyer, Alan W. Black, Isabel Trancoso, Ramon Fermandez, Silvio Amir, Luis Marujo, and Tiago Luis. 2015. Finding function in form: Compositional character models for open vocabulary word representation. In EMNLP.
    • (2015) EMNLP
    • Ling, W.1    Dyer, C.2    Black, A.W.3    Trancoso, I.4    Fermandez, R.5    Amir, S.6    Marujo, L.7    Luis, T.8
  • 30
    • 85011928654 scopus 로고    scopus 로고
    • End-To-end sequence labeling via bi-directional LSTM-CNNs-CRF
    • Xuezhe Ma and Eduard H. Hovy. 2016. End-To-end sequence labeling via bi-directional LSTM-CNNs-CRF. In ACL.
    • (2016) ACL
    • Ma, X.1    Hovy, E.H.2
  • 31
  • 32
    • 85047011411 scopus 로고    scopus 로고
    • Learned in translation: Contextualized word vectors
    • Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. 2017. Learned in translation: Contextualized word vectors. In NIPS 2017.
    • (2017) NIPS , vol.2017
    • McCann, B.1    Bradbury, J.2    Xiong, C.3    Socher, R.4
  • 33
    • 85072757323 scopus 로고    scopus 로고
    • Context2vec: Learning generic context embedding with bidirectional lstm
    • Oren Melamud, Jacob Goldberger, and Ido Dagan. 2016. context2vec: Learning generic context embedding with bidirectional lstm. In CoNLL.
    • (2016) CoNLL
    • Melamud, O.1    Goldberger, J.2    Dagan, I.3
  • 36
    • 84898956512 scopus 로고    scopus 로고
    • Distributed representations of words and phrases and their compositionality
    • Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Distributed representations of words and phrases and their compositionality. In NIPS.
    • (2013) NIPS
    • Mikolov, T.1    Sutskever, I.2    Chen, K.3    Corrado, G.S.4    Dean, J.5
  • 38
    • 85021647551 scopus 로고    scopus 로고
    • Neural tree indexers for text understanding
    • Tsendsuren Munkhdalai and Hong Yu. 2017. Neural tree indexers for text understanding. In EACL.
    • (2017) EACL
    • Munkhdalai, T.1    Yu, H.2
  • 39
    • 84961311338 scopus 로고    scopus 로고
    • Efficient nonparametric estimation of multiple embeddings per word in vector space
    • Arvind Neelakantan, Jeevan Shankar, Alexandre Passos, and Andrew McCallum. 2014. Efficient nonparametric estimation of multiple embeddings per word in vector space. In EMNLP.
    • (2014) EMNLP
    • Neelakantan, A.1    Shankar, J.2    Passos, A.3    McCallum, A.4
  • 40
    • 33645983416 scopus 로고    scopus 로고
    • The proposition bank: An annotated corpus of semantic roles
    • Martha Palmer, Paul Kingsbury, and Daniel Gildea. 2005. The proposition bank: An annotated corpus of semantic roles. Computational Linguistics 31:71-106.
    • (2005) Computational Linguistics , vol.31 , pp. 71-106
    • Palmer, M.1    Kingsbury, P.2    Gildea, D.3
  • 41
    • 84961289992 scopus 로고    scopus 로고
    • Glove: Global vectors for word representation
    • Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove: Global vectors for word representation. In EMNLP.
    • (2014) EMNLP
    • Pennington, J.1    Socher, R.2    Manning, C.D.3
  • 42
    • 85040943617 scopus 로고    scopus 로고
    • Semi-supervised sequence tagging with bidirectional language models
    • Matthew E. Peters, Waleed Ammar, Chandra Bhagavatula, and Russell Power. 2017. Semi-supervised sequence tagging with bidirectional language models. In ACL.
    • (2017) ACL
    • Peters, M.E.1    Ammar, W.2    Bhagavatula, C.3    Power, R.4
  • 44
    • 85104634025 scopus 로고    scopus 로고
    • Conll-2012 shared task: Modeling multilingual unrestricted coreference in ontonotes
    • Sameer Pradhan, Alessandro Moschitti, Nianwen Xue, Olga Uryupina, and Yuchen Zhang. 2012. Conll-2012 shared task: Modeling multilingual unrestricted coreference in ontonotes. In EMNLPCoNLL Shared Task.
    • (2012) EMNLPCoNLL Shared Task
    • Pradhan, S.1    Moschitti, A.2    Xue, N.3    Uryupina, O.4    Zhang, Y.5
  • 45
    • 85073143111 scopus 로고    scopus 로고
    • Neural sequence learning models for word sense disambiguation
    • Alessandro Raganato, Claudio Delli Bovi, and Roberto Navigli. 2017a. Neural sequence learning models for word sense disambiguation. In EMNLP.
    • (2017) EMNLP
    • Raganato, A.1    Delli Bovi, C.2    Navigli, R.3
  • 46
    • 85021685886 scopus 로고    scopus 로고
    • Word sense disambiguation: A unified evaluation framework and empirical comparison
    • Alessandro Raganato, Jose Camacho-Collados, and Roberto Navigli. 2017b. Word sense disambiguation: A unified evaluation framework and empirical comparison. In EACL.
    • (2017) EACL
    • Raganato, A.1    Camacho-Collados, J.2    Navigli, R.3
  • 47
    • 85071396128 scopus 로고    scopus 로고
    • Squad: 100, 000+ questions for machine comprehension of text
    • Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. Squad: 100, 000+ questions for machine comprehension of text. In EMNLP.
    • (2016) EMNLP
    • Rajpurkar, P.1    Zhang, J.2    Lopyrev, K.3    Liang, P.4
  • 48
    • 85083505044 scopus 로고    scopus 로고
    • Improving sequence to sequence learning with unlabeled data
    • Prajit Ramachandran, Peter Liu, and Quoc Le. 2017. Improving sequence to sequence learning with unlabeled data. In EMNLP.
    • (2017) EMNLP
    • Ramachandran, P.1    Liu, P.2    Le, Q.3
  • 49
    • 85099019865 scopus 로고    scopus 로고
    • Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition
    • Erik F. Tjong Kim Sang and Fien De Meulder. 2003. Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition. In CoNLL.
    • (2003) CoNLL
    • Tjong, E.F.1    Sang, K.2    De Meulder, F.3
  • 50
    • 85073246496 scopus 로고    scopus 로고
    • Bidirectional attention flow for machine comprehension
    • Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. 2017. Bidirectional attention flow for machine comprehension. In ICLR.
    • (2017) ICLR
    • Joon Seo, M.1    Kembhavi, A.2    Farhadi, A.3    Hajishirzi, H.4
  • 51
    • 84926358845 scopus 로고    scopus 로고
    • Recursive deep models for semantic compositionality over a sentiment treebank
    • Richard Socher, Alex Perelygin, Jean Y Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment treebank. In EMNLP.
    • (2013) EMNLP
    • Socher, R.1    Perelygin, A.2    Wu, J.Y.3    Chuang, J.4    Manning, C.D.5    Ng, A.Y.6    Potts, C.7
  • 52
    • 85002310679 scopus 로고    scopus 로고
    • Deep multi-Task learning with low level tasks supervised at lower layers
    • Anders Sogaard and Yoav Goldberg. 2016. Deep multi-Task learning with low level tasks supervised at lower layers. In ACL 2016.
    • (2016) ACL , vol.2016
    • Sogaard, A.1    Goldberg, Y.2
  • 55
    • 80053495924 scopus 로고    scopus 로고
    • Word representations: A simple and general method for semi-supervised learning
    • Joseph P. Turian, Lev-Arie Ratinov, and Yoshua Bengio. 2010. Word representations: A simple and general method for semi-supervised learning. In ACL.
    • (2010) ACL
    • Turian, J.P.1    Ratinov, L.2    Bengio, Y.3
  • 56
    • 85029072256 scopus 로고    scopus 로고
    • Gated self-matching networks for reading comprehension and question answering
    • Wenhui Wang, Nan Yang, Furu Wei, Baobao Chang, and Ming Zhou. 2017. Gated self-matching networks for reading comprehension and question answering. In ACL.
    • (2017) ACL
    • Wang, W.1    Yang, N.2    Wei, F.3    Chang, B.4    Zhou, M.5
  • 57
    • 85072845124 scopus 로고    scopus 로고
    • Charagram: Embedding words and sentences via character n-grams
    • JohnWieting, Mohit Bansal, Kevin Gimpel, and Karen Livescu. 2016. Charagram: Embedding words and sentences via character n-grams. In EMNLP.
    • (2016) EMNLP
    • Mohit Bansal, J.1    Gimpel, K.2    Livescu, K.3
  • 58
    • 84994141150 scopus 로고    scopus 로고
    • Learning global features for coreference resolution
    • Sam Wiseman, Alexander M. Rush, and Stuart M. Shieber. 2016. Learning global features for coreference resolution. In HLT-NAACL.
    • (2016) HLT-NAACL
    • Wiseman, S.1    Rush, A.M.2    Shieber, S.M.3
  • 60
    • 84943737769 scopus 로고    scopus 로고
    • End-To-end learning of semantic role labeling using recurrent neural networks
    • Jie Zhou and Wei Xu. 2015. End-To-end learning of semantic role labeling using recurrent neural networks. In ACL.
    • (2015) ACL
    • Zhou, J.1    Xu, W.2
  • 61
    • 85054981994 scopus 로고    scopus 로고
    • Text classification improved by integrating bidirectional lstm with twodimensional max pooling
    • Peng Zhou, Zhenyu Qi, Suncong Zheng, Jiaming Xu, Hongyun Bao, and Bo Xu. 2016. Text classification improved by integrating bidirectional lstm with twodimensional max pooling. In COLING.
    • (2016) COLING
    • Zhou, P.1    Qi, Z.2    Zheng, S.3    Xu, J.4    Bao, H.5    Xu, B.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.