메뉴 건너뛰기




Volumn 1, Issue , 2017, Pages 1756-1765

Semi-supervised sequence tagging with bidirectional language models

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL LINGUISTICS; EMBEDDINGS; LABELED DATA; NATURAL LANGUAGE PROCESSING SYSTEMS; NETWORK ARCHITECTURE; TRANSFER LEARNING;

EID: 85040943617     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.18653/v1/P17-1161     Document Type: Conference Paper
Times cited : (481)

References (45)
  • 1
    • 85040941765 scopus 로고    scopus 로고
    • The AI2 system at SemEval-2017 Task 10 (ScienceIE): Semi-supervised end-to-end entity and relation extraction
    • Waleed Ammar, Matthew E. Peters, Chandra Bhagavatula, and Russell Power. 2017. The AI2 system at SemEval-2017 Task 10 (ScienceIE): semi-supervised end-to-end entity and relation extraction. In ACL workshop (SemEval).
    • (2017) ACL Workshop (SemEval)
    • Ammar, W.1    Peters, M.E.2    Bhagavatula, C.3    Power, R.4
  • 2
    • 84859921107 scopus 로고    scopus 로고
    • A high-performance semi-supervised learning method for text chunking
    • Rie Kubota Ando and Tong Zhang. 2005. A high-performance semi-supervised learning method for text chunking. In ACL.
    • (2005) ACL
    • Ando, R.K.1    Zhang, T.2
  • 4
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-training
    • Avrim Blum and Tom Mitchell. 1998. Combining labeled and unlabeled data with co-training. In COLT.
    • (1998) COLT
    • Blum, A.1    Mitchell, T.2
  • 5
    • 84943757899 scopus 로고    scopus 로고
    • One billion word benchmark for measuring progress in statistical language modeling
    • abs/1312.3005
    • Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, and Phillipp Koehn. 2014. One billion word benchmark for measuring progress in statistical language modeling. CoRR abs/1312.3005.
    • (2014) CoRR
    • Chelba, C.1    Mikolov, T.2    Schuster, M.3    Ge, Q.4    Brants, T.5    Koehn, P.6
  • 6
    • 85016097618 scopus 로고    scopus 로고
    • Named entity recognition with bidirectional LSTM-CNNs
    • Jason Chiu and Eric Nichols. 2016. Named entity recognition with bidirectional LSTM-CNNs. In TACL.
    • (2016) TACL
    • Chiu, J.1    Nichols, E.2
  • 8
    • 85127836544 scopus 로고    scopus 로고
    • Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms
    • Michael Collins. 2002. Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms. In EMNLP.
    • (2002) EMNLP
    • Collins, M.1
  • 10
    • 84965138788 scopus 로고    scopus 로고
    • Semi-supervised sequence learning
    • Andrew M. Dai and Quoc V. Le. 2015. Semi-supervised sequence learning. In NIPS.
    • (2015) NIPS
    • Dai, A.M.1    Le, Q.V.2
  • 11
    • 84906921986 scopus 로고    scopus 로고
    • Fast and robust neural network joint models for statistical machine translation
    • Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas Lamar, Richard M Schwartz, and John Makhoul. 2014. Fast and robust neural network joint models for statistical machine translation. In ACL.
    • (2014) ACL
    • Devlin, J.1    Zbib, R.2    Huang, Z.3    Lamar, T.4    Schwartz, R.M.5    Makhoul, J.6
  • 13
    • 85040917782 scopus 로고    scopus 로고
    • A joint many-task model: Growing a neural network for multiple nlp tasks
    • abs/1611.01587
    • Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsu-ruoka, and Richard Socher. 2016. A joint many-task model: Growing a neural network for multiple nlp tasks. CoRR abs/1611.01587.
    • (2016) CoRR
    • Hashimoto, K.1    Xiong, C.2    Tsuruoka, Y.3    Socher, R.4
  • 14
    • 84994157681 scopus 로고    scopus 로고
    • Learning distributed representations of sentences from unlabelled data
    • Felix Hill, Kyunghyun Cho, and Anna Korhonen. 2016. Learning distributed representations of sentences from unlabelled data. In HLT-NAACL.
    • (2016) HLT-NAACL
    • Hill, F.1    Cho, K.2    Korhonen, A.3
  • 17
    • 84926283798 scopus 로고    scopus 로고
    • Recurrent continuous translation models
    • Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent continuous translation models. In EMNLP.
    • (2013) EMNLP
    • Kalchbrenner, N.1    Blunsom, P.2
  • 18
    • 84959876313 scopus 로고    scopus 로고
    • Visualizing and understanding recurrent networks
    • Andrej Karpathy, Justin Johnson, and Li Fei-Fei. 2015. Visualizing and understanding recurrent networks. In ICLR workshop.
    • (2015) ICLR Workshop
    • Karpathy, A.1    Johnson, J.2    Fei-Fei, L.3
  • 19
    • 85083951076 scopus 로고    scopus 로고
    • Adam: A method for stochastic optimization
    • Diederik P. Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In ICLR.
    • (2015) ICLR
    • Kingma, D.P.1    Ba, J.2
  • 22
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • John D. Lafferty, Andrew McCallum, and Fernando Pereira. 2001. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML.
    • (2001) ICML
    • Lafferty, J.D.1    McCallum, A.2    Pereira, F.3
  • 24
    • 84919829999 scopus 로고    scopus 로고
    • Distributed representations of sentences and documents
    • Quoc V. Le and Tomas Mikolov. 2014. Distributed representations of sentences and documents. In ICML.
    • (2014) ICML
    • Le, Q.V.1    Mikolov, T.2
  • 25
    • 34547991287 scopus 로고    scopus 로고
    • Semi-supervised sequence modeling with syntactic topic models
    • Wei Li and Andrew McCallum. 2005. Semi-supervised sequence modeling with syntactic topic models. In AAAI.
    • (2005) AAAI
    • Li, W.1    McCallum, A.2
  • 26
    • 85021663297 scopus 로고    scopus 로고
    • Assessing the ability of LSTMs to learn syntax-sensitive dependencies
    • Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg. 2016. Assessing the ability of LSTMs to learn syntax-sensitive dependencies. In TACL.
    • (2016) TACL
    • Linzen, T.1    Dupoux, E.2    Goldberg, Y.3
  • 27
    • 84959884304 scopus 로고    scopus 로고
    • Joint entity recognition and disambiguation
    • Gang Luo, Xiaojiang Huang, Chin-Yew Lin, and Za-iqing Nie. 2015. Joint entity recognition and disambiguation. In EMNLP.
    • (2015) EMNLP
    • Luo, G.1    Huang, X.2    Lin, C.-Y.3    Nie, Z.-I.4
  • 28
    • 85011928654 scopus 로고    scopus 로고
    • End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF
    • Xuezhe Ma and Eduard H. Hovy. 2016. End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF. In ACL.
    • (2016) ACL
    • Ma, X.1    Hovy, E.H.2
  • 29
    • 85072757323 scopus 로고    scopus 로고
    • Context2vec: Learning generic context embedding with bidirectional lstm
    • Oren Melamud, Jacob Goldberger, and Ido Dagan. 2016. context2vec: Learning generic context embedding with bidirectional lstm. In CoNLL.
    • (2016) CoNLL
    • Melamud, O.1    Goldberger, J.2    Dagan, I.3
  • 31
    • 84898956512 scopus 로고    scopus 로고
    • Distributed representations of words and phrases and their compositionality
    • Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-rado, and Jeff Dean. 2013. Distributed representations of words and phrases and their compositionality. In NIPS.
    • (2013) NIPS
    • Mikolov, T.1    Sutskever, I.2    Chen, K.3    Corrado, G.S.4    Dean, J.5
  • 32
    • 76249118766 scopus 로고    scopus 로고
    • Syntax-based semi-supervised named entity tagging
    • Behrang Mohit and Rebecca Hwa. 2005. Syntax-based semi-supervised named entity tagging. In ACL.
    • (2005) ACL
    • Mohit, B.1    Hwa, R.2
  • 33
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using em
    • Kamal Nigam, Andrew Kachites McCallum, Sebastian Thrun, and Tom Mitchell. 2000. Text classification from labeled and unlabeled documents using em. Machine learning.
    • (2000) Machine Learning
    • Nigam, K.1    McCallum, A.K.2    Thrun, S.3    Mitchell, T.4
  • 34
    • 84961289992 scopus 로고    scopus 로고
    • Glove: Global vectors for word representation
    • Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove: Global vectors for word representation. In EMNLP.
    • (2014) EMNLP
    • Pennington, J.1    Socher, R.2    Manning, C.D.3
  • 36
    • 2142727946 scopus 로고    scopus 로고
    • Limitations of co-training for natural language learning from large datasets
    • David Pierce and Claire Cardie. 2001. Limitations of co-training for natural language learning from large datasets. In EMNLP.
    • (2001) EMNLP
    • Pierce, D.1    Cardie, C.2
  • 37
    • 84862300668 scopus 로고    scopus 로고
    • Design challenges and misconceptions in named entity recognition
    • Lev-Arie Ratinov and Dan Roth. 2009. Design challenges and misconceptions in named entity recognition. In CoNLL.
    • (2009) CoNLL
    • Ratinov, L.-A.1    Roth, D.2
  • 38
    • 84910046405 scopus 로고    scopus 로고
    • Long short-term memory recurrent neural network architectures for large scale acoustic modeling
    • Hasim Sak, Andrew W. Senior, and Franoise Beaufays. 2014. Long short-term memory recurrent neural network architectures for large scale acoustic modeling. In INTERSPEECH.
    • (2014) INTERSPEECH
    • Sak, H.1    Senior, A.W.2    Beaufays, F.3
  • 39
    • 85109864082 scopus 로고    scopus 로고
    • Introduction to the CoNLL-2000 shared task chunking
    • Erik F. Tjong Kim Sang and Sabine Buchholz. 2000. Introduction to the CoNLL-2000 shared task chunking. In CoNLL/LLL.
    • (2000) CoNLL/LLL
    • Tjong Kim Sang, E.F.1    Buchholz, S.2
  • 40
    • 85099019865 scopus 로고    scopus 로고
    • Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition
    • Erik F. Tjong Kim Sang and Fien De Meulder. 2003. Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition. In CoNLL.
    • (2003) CoNLL
    • Tjong Kim Sang, E.F.1    De Meulder, F.2
  • 41
    • 84906928381 scopus 로고    scopus 로고
    • Semi-supervised learning and domain adaptation in natural language processing
    • Anders Søgaard. 2013. Semi-supervised learning and domain adaptation in natural language processing. Synthesis Lectures on Human Language Technologies.
    • (2013) Synthesis Lectures on Human Language Technologies
    • Søgaard, A.1
  • 42
    • 85002310679 scopus 로고    scopus 로고
    • Deep multi-task learning with low level tasks supervised at lower layers
    • Anders Søgaard and Yoav Goldberg. 2016. Deep multi-task learning with low level tasks supervised at lower layers. In ACL.
    • (2016) ACL
    • Søgaard, A.1    Goldberg, Y.2
  • 43
    • 85071661854 scopus 로고    scopus 로고
    • Semi-supervised structured output learning based on a hybrid generative and discriminative approach
    • Jun Suzuki, Akinori Fujino, and Hideki Isozaki. 2007. Semi-supervised structured output learning based on a hybrid generative and discriminative approach. In EMNLP-CoNLL.
    • (2007) EMNLP-CoNLL
    • Suzuki, J.1    Fujino, A.2    Isozaki, H.3
  • 44
    • 84859884966 scopus 로고    scopus 로고
    • Semi-supervised sequential labeling and segmentation using giga-word scale unlabeled data
    • Jun Suzuki and Hideki Isozaki. 2008. Semi-supervised sequential labeling and segmentation using giga-word scale unlabeled data. In ACL.
    • (2008) ACL
    • Suzuki, J.1    Isozaki, H.2
  • 45
    • 85088227623 scopus 로고    scopus 로고
    • Transfer learning for sequence tagging with hierarchical recurrent networks
    • Zhilin Yang, Ruslan Salakhutdinov, and William W. Cohen. 2017. Transfer learning for sequence tagging with hierarchical recurrent networks. In ICLR.
    • (2017) ICLR
    • Yang, Z.1    Salakhutdinov, R.2    Cohen, W.W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.