-
1
-
-
85016446194
-
On perturbed proximal gradient algorithms
-
Atchade, Y.F., Fort, G., Moulines, E.: On perturbed proximal gradient algorithms. J. Mach. Learn. Res. 18, 310–342 (2017)
-
(2017)
J. Mach. Learn. Res.
, vol.18
, pp. 310-342
-
-
Atchade, Y.F.1
Fort, G.2
Moulines, E.3
-
2
-
-
84871604261
-
Structured sparsity through convex optimization
-
Bach, F., Jenatton, R., Mairal, J., Obozinski, G.: Structured sparsity through convex optimization. Stat. Sci. 27, 450–468 (2012)
-
(2012)
Stat. Sci.
, vol.27
, pp. 450-468
-
-
Bach, F.1
Jenatton, R.2
Mairal, J.3
Obozinski, G.4
-
3
-
-
85162480829
-
Non-asymptotic analysis of stochastic approximation algorithms for machine learning
-
Bach, F., Moulines, E.: Non-asymptotic analysis of stochastic approximation algorithms for machine learning. In: Advances in Neural Information Processing Systems, vol. 24 (2011)
-
(2011)
Advances in Neural Information Processing Systems
, vol.24
-
-
Bach, F.1
Moulines, E.2
-
5
-
-
0003778897
-
-
Springer, Berlin
-
Benveniste, A., Métivier, M., Priouret, P.: Adaptive Algorithms and Stochastic Approximations, vol. 22. Springer, Berlin (1990)
-
(1990)
Adaptive Algorithms and Stochastic Approximations
, vol.22
-
-
Benveniste, A.1
Métivier, M.2
Priouret, P.3
-
6
-
-
84867120454
-
Incremental gradient, subgradient, and proximal methods for convex optimization: A survey
-
Bertsekas, D.P.: Incremental gradient, subgradient, and proximal methods for convex optimization: a survey. In: Optimization for Machine Learning, pp. 85–104 (2011)
-
(2011)
Optimization for Machine Learning
, pp. 85-104
-
-
Bertsekas, D.P.1
-
7
-
-
0034389611
-
Gradient convergence in gradient methods with errors
-
(electronic
-
Bertsekas, D.P., Tsitsiklis, J.N.: Gradient convergence in gradient methods with errors. SIAM J. Optim. 10, 627–642 (2000). (electronic)
-
(2000)
SIAM J. Optim.
, vol.10
, pp. 627-642
-
-
Bertsekas, D.P.1
Tsitsiklis, J.N.2
-
8
-
-
84979600342
-
Dynamical behavior of a stochastic forward-backward algorithm using random monotone operators
-
Bianchi, P., Hachem, W.: Dynamical behavior of a stochastic forward-backward algorithm using random monotone operators. J. Optim. Theory Appl. 171, 90–120 (2016)
-
(2016)
J. Optim. Theory Appl.
, vol.171
, pp. 90-120
-
-
Bianchi, P.1
Hachem, W.2
-
9
-
-
39449100600
-
A convergent incremental gradient method with a constant step size
-
Blatt, D., Hero, A., Gauchman, H.: A convergent incremental gradient method with a constant step size. SIAM J. Optim. 18, 29–51 (2007)
-
(2007)
SIAM J. Optim.
, vol.18
, pp. 29-51
-
-
Blatt, D.1
Hero, A.2
Gauchman, H.3
-
10
-
-
85046649212
-
Optimization methods for large-scale machine learning
-
Bottou, L., Curtis, F., Nocedal, J.: Optimization methods for large-scale machine learning. SIAM Rev. 60, 223–311 (2018)
-
(2018)
SIAM Rev.
, vol.60
, pp. 223-311
-
-
Bottou, L.1
Curtis, F.2
Nocedal, J.3
-
11
-
-
84926078662
-
-
Cambridge University Press, Cambridge
-
Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge University Press, Cambridge (2006)
-
(2006)
Prediction, Learning, and Games
-
-
Cesa-Bianchi, N.1
Lugosi, G.2
-
12
-
-
84940391194
-
Stochastic quasi-fejér block-coordinate fixed point iterations with random sweeping
-
Combettes, P.L., Pesquet, J.-C.: Stochastic quasi-fejér block-coordinate fixed point iterations with random sweeping. SIAM J. Optim. 25, 1221–1248 (2015)
-
(2015)
SIAM J. Optim.
, vol.25
, pp. 1221-1248
-
-
Combettes, P.L.1
Pesquet, J.-C.2
-
13
-
-
84964287980
-
Stochastic approximations and perturbations in forward-backward splitting for monotone operators
-
Combettes, P.L., Pesquet, J.-C.: Stochastic approximations and perturbations in forward-backward splitting for monotone operators. Pure Appl. Funct. Anal. 1, 13–37 (2016)
-
(2016)
Pure Appl. Funct. Anal.
, vol.1
, pp. 13-37
-
-
Combettes, P.L.1
Pesquet, J.-C.2
-
15
-
-
30844438177
-
Signal recovery by proximal forward-backward splitting
-
(electronic
-
Combettes, P.L., Wajs, Valérie R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4, 1168–1200 (2005). (electronic)
-
(2005)
Multiscale Model. Simul.
, vol.4
, pp. 1168-1200
-
-
Combettes, P.L.1
Wajs, V.R.2
-
16
-
-
62549127689
-
Elastic-net regularization in learning theory
-
De Mol, C., De Vito, E., Rosasco, L.: Elastic-net regularization in learning theory. J. Complex. 25, 201–230 (2009)
-
(2009)
J. Complex.
, vol.25
, pp. 201-230
-
-
De Mol, C.1
De Vito, E.2
Rosasco, L.3
-
17
-
-
84937908747
-
SAGA: a fast incremental gradient method with support for non-strongly convex composite objectives
-
Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: a fast incremental gradient method with support for non-strongly convex composite objectives. Adv. Neural Inf. Process. Syst. 27, 1646–1654 (2014)
-
(2014)
Adv. Neural Inf. Process. Syst.
, vol.27
, pp. 1646-1654
-
-
Defazio, A.1
Bach, F.2
Lacoste-Julien, S.3
-
18
-
-
75249102673
-
Efficient online and batch learning using forward backward splitting
-
Duchi, J., Singer, Y.: Efficient online and batch learning using forward backward splitting. J. Mach. Learn. Res. 10, 2899–2934 (2009)
-
(2009)
J. Mach. Learn. Res.
, vol.10
, pp. 2899-2934
-
-
Duchi, J.1
Singer, Y.2
-
19
-
-
0040314261
-
On the method of generalized stochastic gradients and quasi-fejér sequences
-
Ermol’ev, YuM: On the method of generalized stochastic gradients and quasi-fejér sequences. Cybernetics 5, 208–220 (1969)
-
(1969)
Cybernetics
, vol.5
, pp. 208-220
-
-
Ermol’ev, Y.M.1
-
21
-
-
84871576447
-
Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization, I: a generic algorithmic framework
-
Ghadimi, S., Lan, G.: Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization, I: a generic algorithmic framework. SIAM J. Optim. 22, 1469–1492 (2012)
-
(2012)
SIAM J. Optim.
, vol.22
, pp. 1469-1492
-
-
Ghadimi, S.1
Lan, G.2
-
22
-
-
84892856128
-
Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization, II: shrinking procedures and optimal algorithms
-
Ghadimi, S., Lan, G.: Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization, II: shrinking procedures and optimal algorithms. SIAM J. Optim. 23, 2061–2089 (2013)
-
(2013)
SIAM J. Optim.
, vol.23
, pp. 2061-2089
-
-
Ghadimi, S.1
Lan, G.2
-
23
-
-
84907359690
-
Beyond the regret minimization barrier: an optimal algorithm for stochastic strongly-convex optimization
-
Hazan, E., Kale, S.: Beyond the regret minimization barrier: an optimal algorithm for stochastic strongly-convex optimization. J. Mach. Learn. Res. 15, 2489–2512 (2014)
-
(2014)
J. Mach. Learn. Res.
, vol.15
, pp. 2489-2512
-
-
Hazan, E.1
Kale, S.2
-
24
-
-
85074491645
-
On variance reduction for stochastic smooth convex optimization with multiplicative noise
-
Published Online
-
Jofré, A., Thompson, P.: On variance reduction for stochastic smooth convex optimization with multiplicative noise. In: Mathematical Programming, Series B, Published Online, pp. 1–40 (2018)
-
(2018)
Mathematical Programming, Series B
, pp. 1-40
-
-
Jofré, A.1
Thompson, P.2
-
25
-
-
84964251369
-
Deterministic and stochastic primal-dual subgradient methods for uniformly convex minimization
-
Juditski, A., Nesterov, Y.: Deterministic and stochastic primal-dual subgradient methods for uniformly convex minimization. Stoch. Syst. 4, 44–80 (2014)
-
(2014)
Stoch. Syst.
, vol.4
, pp. 44-80
-
-
Juditski, A.1
Nesterov, Y.2
-
26
-
-
0001079593
-
Stochastic estimation of the maximum of a regression function
-
Kiefer, J., Wolfowitz, J.: Stochastic estimation of the maximum of a regression function. Ann. Math. Stat. 23, 462–466 (1952)
-
(1952)
Ann. Math. Stat.
, vol.23
, pp. 462-466
-
-
Kiefer, J.1
Wolfowitz, J.2
-
28
-
-
77956508892
-
Accelerated gradient methods for stochastic optimization and online learning
-
Kwok, J.T., Hu, C., Pan, W.: Accelerated gradient methods for stochastic optimization and online learning. Adv. Neural Inf. Process. Syst. 22, 781–789 (2009)
-
(2009)
Adv. Neural Inf. Process. Syst.
, vol.22
, pp. 781-789
-
-
Kwok, J.T.1
Hu, C.2
Pan, W.3
-
29
-
-
84862273593
-
An optimal method for stochastic composite optimization
-
Lan, G.: An optimal method for stochastic composite optimization. Math. Progr. 133, 365–397 (2012)
-
(2012)
Math. Progr.
, vol.133
, pp. 365-397
-
-
Lan, G.1
-
30
-
-
85033389760
-
Modified Fejér sequences and applications
-
Lin, J., Rosasco, L., Villa, S., Zhou, D.-X.: Modified Fejér sequences and applications. Comput. Optim. Appl. 71, 95–113 (2018)
-
(2018)
Comput. Optim. Appl.
, vol.71
, pp. 95-113
-
-
Lin, J.1
Rosasco, L.2
Villa, S.3
Zhou, D.-X.4
-
31
-
-
84901193687
-
A sparsity preserving stochastic gradient methods for sparse regression
-
Lin, Q., Chen, X., Peña, J.: A sparsity preserving stochastic gradient methods for sparse regression. Comput. Optim. Appl. 58, 455–482 (2014)
-
(2014)
Comput. Optim. Appl.
, vol.58
, pp. 455-482
-
-
Lin, Q.1
Chen, X.2
Peña, J.3
-
32
-
-
78049443983
-
Solving structured sparsity regularization with proximal methods
-
Springer, Berlin
-
Mosci, S., Rosasco, L., Santoro, M., Verri, A., Villa, S.: Solving structured sparsity regularization with proximal methods. In: Machine Learning and Knowledge discovery in Databases European Conference, ECML PKDD, pp. 418–433. Springer, Berlin (2010)
-
(2010)
Machine Learning and Knowledge Discovery in Databases European Conference, ECML PKDD
, pp. 418-433
-
-
Mosci, S.1
Rosasco, L.2
Santoro, M.3
Verri, A.4
Villa, S.5
-
33
-
-
0016479333
-
The rate of convergence of the stochastic gradient method
-
Nekrylova, Z.V.: The rate of convergence of the stochastic gradient method. Cybernetics 11, 218–222 (1975)
-
(1975)
Cybernetics
, vol.11
, pp. 218-222
-
-
Nekrylova, Z.V.1
-
34
-
-
70450197241
-
Robust stochastic approximation approach to stochastic programming
-
Nemirovski, A., Juditsky, A., Lan, G., Shapiro, A.: Robust stochastic approximation approach to stochastic programming. SIAM J. Optim. 19, 1574–1609 (2008)
-
(2008)
SIAM J. Optim.
, vol.19
, pp. 1574-1609
-
-
Nemirovski, A.1
Juditsky, A.2
Lan, G.3
Shapiro, A.4
-
37
-
-
0026899240
-
Acceleration of stochastic approximation by averaging
-
Polyak, B.T., Juditsky, A.B.: Acceleration of stochastic approximation by averaging. SIAM J. Control Optim. 30, 838–855 (1992)
-
(1992)
SIAM J. Control Optim.
, vol.30
, pp. 838-855
-
-
Polyak, B.T.1
Juditsky, A.B.2
-
38
-
-
84867120686
-
Making gradient descent optimal for strongly convex stochastic optimization
-
Rakhlin, A., Shamir, O., Sridaran, K.: Making gradient descent optimal for strongly convex stochastic optimization. In: Proceedings of the 29th International Conference on Machine Learning, pp. 449–456 (2012)
-
(2012)
Proceedings of the 29Th International Conference on Machine Learning
, pp. 449-456
-
-
Rakhlin, A.1
Shamir, O.2
Sridaran, K.3
-
39
-
-
0000016172
-
A stochastic approximation method
-
Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22, 400–407 (1951)
-
(1951)
Ann. Math. Stat.
, vol.22
, pp. 400-407
-
-
Robbins, H.1
Monro, S.2
-
40
-
-
84964211787
-
Stochastic forward-backward splitting for monotone inclusions
-
Rosasco, L., Villa, S., Vu, B.C.: Stochastic forward-backward splitting for monotone inclusions. J. Optim. Theory Appl. 169, 388–406 (2016)
-
(2016)
J. Optim. Theory Appl.
, vol.169
, pp. 388-406
-
-
Rosasco, L.1
Villa, S.2
Vu, B.C.3
-
41
-
-
85017588583
-
A first-order stochastic primal-dual algorithm with correction step
-
Rosasco, L., Villa, S., Vu, B.C.: A first-order stochastic primal-dual algorithm with correction step. Numer. Funct. Anal. Optim. 38, 602–626 (2017)
-
(2017)
Numer. Funct. Anal. Optim.
, vol.38
, pp. 602-626
-
-
Rosasco, L.1
Villa, S.2
Vu, B.C.3
-
42
-
-
84974777235
-
Minimizing finite sums with the stochastic average gradient
-
Schmidt, M., Le Roux, N., Bach, F.: Minimizing finite sums with the stochastic average gradient. Math. Progr. Ser. B 162, 83–112 (2017)
-
(2017)
Math. Progr. Ser. B
, vol.162
, pp. 83-112
-
-
Schmidt, M.1
Le Roux, N.2
Bach, F.3
-
43
-
-
85162564991
-
Convergence rates of inexact proximal-gradient methods for convex optimization
-
Schmidt, M.W., Le Roux, N., Bach, F.: Convergence rates of inexact proximal-gradient methods for convex optimization. Adv. Neural Inf. Process. Syst. 24, 1458–1466 (2011)
-
(2011)
Adv. Neural Inf. Process. Syst.
, vol.24
, pp. 1458-1466
-
-
Schmidt, M.W.1
Le Roux, N.2
Bach, F.3
-
45
-
-
79952748054
-
Pegasos: primal estimated sub-gradient solver for SVM
-
Shalev-Shwartz, S., Singer, Y., Srebro, N., Cotter, A.: Pegasos: primal estimated sub-gradient solver for SVM. Math. Progr. Ser. B 127, 3–30 (2011)
-
(2011)
Math. Progr. Ser. B
, vol.127
, pp. 3-30
-
-
Shalev-Shwartz, S.1
Singer, Y.2
Srebro, N.3
Cotter, A.4
-
47
-
-
84897554805
-
Stochastic gradient descent for non-smooth optimization: Convergence results and optimal averaging schemes
-
Shamir, O., Zhang, T.: Stochastic gradient descent for non-smooth optimization: convergence results and optimal averaging schemes. In: Proceedings of the 30th International Conference on Machine Learning, pp. 71–79 (2013)
-
(2013)
Proceedings of the 30Th International Conference on Machine Learning
, pp. 71-79
-
-
Shamir, O.1
Zhang, T.2
-
49
-
-
84901191783
-
Proximal methods for the latent group lasso penalty
-
Villa, S., Rosasco, L., Mosci, S., Verri, A.: Proximal methods for the latent group lasso penalty. Comput. Optim. Appl. 58, 381–407 (2014)
-
(2014)
Comput. Optim. Appl.
, vol.58
, pp. 381-407
-
-
Villa, S.1
Rosasco, L.2
Mosci, S.3
Verri, A.4
-
50
-
-
84886247153
-
Accelerated and inexact forward-backward algorithms
-
Villa, S., Salzo, S., Baldassarre, L., Verri, A.: Accelerated and inexact forward-backward algorithms. SIAM J. Optim. 23, 1607–1633 (2013)
-
(2013)
SIAM J. Optim.
, vol.23
, pp. 1607-1633
-
-
Villa, S.1
Salzo, S.2
Baldassarre, L.3
Verri, A.4
-
51
-
-
78649396336
-
Dual averaging methods for regularized stochastic learning and online optimization
-
Xiao, L.: Dual averaging methods for regularized stochastic learning and online optimization. J. Mach. Learn. Res. 11, 2543–2596 (2010)
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 2543-2596
-
-
Xiao, L.1
-
52
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
Zou, Z., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B 67, 301–320 (2005)
-
(2005)
J. R. Stat. Soc. Ser. B
, vol.67
, pp. 301-320
-
-
Zou, Z.1
Hastie, T.2
|