-
3
-
-
85073153811
-
Emotion analysis as a regression problem - dimensional models and their implications on emotion representation and metrical evaluation
-
Sven Buechel and Udo Hahn. 2016. Emotion analysis as a regression problem - dimensional models and their implications on emotion representation and metrical evaluation. In 22nd European Conference on Artificial Intelligence (ECAI).
-
(2016)
22nd European Conference on Artificial Intelligence (ECAI)
-
-
Buechel, S.1
Hahn, U.2
-
4
-
-
84971640658
-
-
François Chollet et al. 2015. Keras. https://github.com/fchollet/keras.
-
(2015)
Keras
-
-
Chollet, F.1
-
5
-
-
56449095373
-
A unified architecture for natural language processing: Deep neural networks with multitask learning
-
Ronan Collobert and Jason Weston. 2008. A unified architecture for natural language processing: Deep neural networks with multitask learning. In 25th International Conference on Machine learning (ICML), pages 160–167.
-
(2008)
25th International Conference on Machine Learning (ICML)
, pp. 160-167
-
-
Collobert, R.1
Weston, J.2
-
6
-
-
85021334142
-
Swisscheese at semeval-2016 task 4: Sentiment classification using an ensemble of convolutional neural networks with distant supervision
-
Jan Deriu, Maurice Gonzenbach, Fatih Uzdilli, Aurelien Lucchi, Valeria De Luca, and Martin Jaggi. 2016. Swisscheese at semeval-2016 task 4: Sentiment classification using an ensemble of convolutional neural networks with distant supervision. Proceedings of SemEval, pages 1124–1128.
-
(2016)
Proceedings of SemEval
, pp. 1124-1128
-
-
Deriu, J.1
Gonzenbach, M.2
Uzdilli, F.3
Lucchi, A.4
de Luca, V.5
Jaggi, M.6
-
7
-
-
84904482223
-
DeCAF: A deep convolutional activation feature for generic visual recognition
-
Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor Darrell. 2014. Decaf: A deep convolutional activation feature for generic visual recognition. In 31th International Conference on Machine Learning (ICML), volume 32, pages 647–655.
-
(2014)
31th International Conference on Machine Learning (ICML)
, vol.32
, pp. 647-655
-
-
Donahue, J.1
Jia, Y.2
Vinyals, O.3
Hoffman, J.4
Zhang, N.5
Tzeng, E.6
Darrell, T.7
-
9
-
-
77949522811
-
Why does unsupervised pre-training help deep learning?
-
Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent, and Samy Bengio. 2010. Why does unsupervised pre-training help deep learning? Journal of Machine Learning Research (JMLR), 11:625–660.
-
(2010)
Journal of Machine Learning Research (JMLR)
, vol.11
, pp. 625-660
-
-
Erhan, D.1
Bengio, Y.2
Courville, A.3
Manzagol, P.-A.4
Vincent, P.5
Bengio, S.6
-
11
-
-
79953762206
-
Twitter sentiment classification using distant supervision
-
Alec Go, Richa Bhayani, and Lei Huang. 2009. Twitter sentiment classification using distant supervision. CS224N Project Report, Stanford, 1(12).
-
(2009)
CS224N Project Report, Stanford
, vol.1
, Issue.12
-
-
Go, A.1
Bhayani, R.2
Huang, L.3
-
19
-
-
84898956512
-
Distributed representations of words and phrases and their compositionality
-
Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Distributed representations of words and phrases and their compositionality. In 27th Conference on Neural Information Processing Systems (NIPS), pages 3111–3119.
-
(2013)
27th Conference on Neural Information Processing Systems (NIPS)
, pp. 3111-3119
-
-
Mikolov, T.1
Sutskever, I.2
Chen, K.3
Corrado, G.S.4
Dean, J.5
-
21
-
-
85016945148
-
Semeval-2016 task 4: Sentiment analysis in twitter
-
Preslav Nakov, Alan Ritter, Sara Rosenthal, Fabrizio Sebastiani, and Veselin Stoyanov. 2016. Semeval-2016 task 4: Sentiment analysis in twitter. In 10th International Workshop on Semantic Evaluation (SemEval), pages 1–18.
-
(2016)
10th International Workshop on Semantic Evaluation (SemEval)
, pp. 1-18
-
-
Nakov, P.1
Ritter, A.2
Rosenthal, S.3
Sebastiani, F.4
Stoyanov, V.5
-
22
-
-
85122003148
-
Creating and characterizing a diverse corpus of sarcasm in dialogue
-
Shereen Oraby, Vrindavan Harrison, Lena Reed, Ernesto Hernandez, Ellen Riloff, and Marilyn Walker. 2016. Creating and characterizing a diverse corpus of sarcasm in dialogue. In 17th Annual Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL), page 31.
-
(2016)
17th Annual Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL)
, pp. 31
-
-
Oraby, S.1
Harrison, V.2
Reed, L.3
Hernandez, E.4
Riloff, E.5
Walker, M.6
-
24
-
-
84859916751
-
Using emoticons to reduce dependency in machine learning techniques for sentiment classification
-
Association for Computational Linguistics
-
Jonathon Read. 2005. Using emoticons to reduce dependency in machine learning techniques for sentiment classification. In ACL student research workshop, pages 43–48. Association for Computational Linguistics.
-
(2005)
ACL Student Research Workshop
, pp. 43-48
-
-
Read, J.1
-
27
-
-
0029489722
-
Overtraining, regularization and searching for a minimum, with application to neural networks
-
Jonas Sjöberg and Lennart Ljung. 1995. Overtraining, regularization and searching for a minimum, with application to neural networks. International Journal of Control, 62(6):1391–1407.
-
(1995)
International Journal of Control
, vol.62
, Issue.6
, pp. 1391-1407
-
-
Sjöberg, J.1
Ljung, L.2
-
32
-
-
84906924350
-
Learning sentiment-specific word embedding for twitter sentiment classification
-
Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting Liu, and Bing Qin. 2014. Learning sentiment-specific word embedding for twitter sentiment classification. In 52th Annual Meeting of the Association for Computational Linguistics (ACL), pages 1555–1565.
-
(2014)
52th Annual Meeting of the Association for Computational Linguistics (ACL)
, pp. 1555-1565
-
-
Tang, D.1
Wei, F.2
Yang, N.3
Zhou, M.4
Liu, T.5
Qin, B.6
-
35
-
-
78449308783
-
Sentiment strength detection in short informal text
-
Mike Thelwall, Kevan Buckley, Georgios Paltoglou, Di Cai, and Arvid Kappas. 2010. Sentiment strength detection in short informal text. Journal of the American Society for Information Science and Technology, 61(12):2544–2558.
-
(2010)
Journal of the American Society for Information Science and Technology
, vol.61
, Issue.12
, pp. 2544-2558
-
-
Thelwall, M.1
Buckley, K.2
Paltoglou, G.3
Cai, D.4
Kappas, A.5
-
36
-
-
84921044284
-
A corpus for research on deliberation and debate
-
Marilyn A Walker, Jean E Fox Tree, Pranav Anand, Rob Abbott, and Joseph King. 2012. A corpus for research on deliberation and debate. In International Conference on Language Resources and Evaluation (LREC), pages 812–817.
-
(2012)
International Conference on Language Resources and Evaluation (LREC)
, pp. 812-817
-
-
Walker, M.A.1
Fox Tree, J.E.2
Anand, P.3
Abbott, R.4
King, J.5
-
37
-
-
0001011680
-
How universal and specific is emotional experience? evidence from 27 countries on five continents
-
Harald G Wallbott and Klaus R Scherer. 1986. How universal and specific is emotional experience? evidence from 27 countries on five continents. International Social Science Council, 25(4):763–795.
-
(1986)
International Social Science Council
, vol.25
, Issue.4
, pp. 763-795
-
-
Wallbott, H.G.1
Scherer, K.R.2
-
38
-
-
82555170524
-
A survey on the role of negation in sentiment analysis
-
Association for Computational Linguistics
-
Michael Wiegand, Alexandra Balahur, Benjamin Roth, Dietrich Klakow, and Andrés Montoyo. 2010. A survey on the role of negation in sentiment analysis. In Workshop on Negation and Speculation in Natural Language Processing (NeSp-NLP), pages 60–68. Association for Computational Linguistics.
-
(2010)
Workshop on Negation and Speculation in Natural Language Processing (NeSp-NLP)
, pp. 60-68
-
-
Wiegand, M.1
Balahur, A.2
Roth, B.3
Klakow, D.4
Montoyo, A.5
-
39
-
-
84994158553
-
Hierarchical attention networks for document classification
-
Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alexander J Smola, and Eduard H Hovy. 2016. Hierarchical attention networks for document classification. In HLT-NAACL.
-
(2016)
HLT-NAACL
-
-
Yang, Z.1
Yang, D.2
Dyer, C.3
He, X.4
Smola, A.J.5
Hovy, E.H.6
|