메뉴 건너뛰기




Volumn , Issue , 2017, Pages 1615-1625

Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm

Author keywords

[No Author keywords available]

Indexed keywords

SENTIMENT ANALYSIS;

EID: 85073167538     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.18653/v1/d17-1169     Document Type: Conference Paper
Times cited : (551)

References (39)
  • 3
    • 85073153811 scopus 로고    scopus 로고
    • Emotion analysis as a regression problem - dimensional models and their implications on emotion representation and metrical evaluation
    • Sven Buechel and Udo Hahn. 2016. Emotion analysis as a regression problem - dimensional models and their implications on emotion representation and metrical evaluation. In 22nd European Conference on Artificial Intelligence (ECAI).
    • (2016) 22nd European Conference on Artificial Intelligence (ECAI)
    • Buechel, S.1    Hahn, U.2
  • 4
    • 84971640658 scopus 로고    scopus 로고
    • François Chollet et al. 2015. Keras. https://github.com/fchollet/keras.
    • (2015) Keras
    • Chollet, F.1
  • 5
    • 56449095373 scopus 로고    scopus 로고
    • A unified architecture for natural language processing: Deep neural networks with multitask learning
    • Ronan Collobert and Jason Weston. 2008. A unified architecture for natural language processing: Deep neural networks with multitask learning. In 25th International Conference on Machine learning (ICML), pages 160–167.
    • (2008) 25th International Conference on Machine Learning (ICML) , pp. 160-167
    • Collobert, R.1    Weston, J.2
  • 6
    • 85021334142 scopus 로고    scopus 로고
    • Swisscheese at semeval-2016 task 4: Sentiment classification using an ensemble of convolutional neural networks with distant supervision
    • Jan Deriu, Maurice Gonzenbach, Fatih Uzdilli, Aurelien Lucchi, Valeria De Luca, and Martin Jaggi. 2016. Swisscheese at semeval-2016 task 4: Sentiment classification using an ensemble of convolutional neural networks with distant supervision. Proceedings of SemEval, pages 1124–1128.
    • (2016) Proceedings of SemEval , pp. 1124-1128
    • Deriu, J.1    Gonzenbach, M.2    Uzdilli, F.3    Lucchi, A.4    de Luca, V.5    Jaggi, M.6
  • 11
    • 79953762206 scopus 로고    scopus 로고
    • Twitter sentiment classification using distant supervision
    • Alec Go, Richa Bhayani, and Lei Huang. 2009. Twitter sentiment classification using distant supervision. CS224N Project Report, Stanford, 1(12).
    • (2009) CS224N Project Report, Stanford , vol.1 , Issue.12
    • Go, A.1    Bhayani, R.2    Huang, L.3
  • 24
    • 84859916751 scopus 로고    scopus 로고
    • Using emoticons to reduce dependency in machine learning techniques for sentiment classification
    • Association for Computational Linguistics
    • Jonathon Read. 2005. Using emoticons to reduce dependency in machine learning techniques for sentiment classification. In ACL student research workshop, pages 43–48. Association for Computational Linguistics.
    • (2005) ACL Student Research Workshop , pp. 43-48
    • Read, J.1
  • 27
    • 0029489722 scopus 로고
    • Overtraining, regularization and searching for a minimum, with application to neural networks
    • Jonas Sjöberg and Lennart Ljung. 1995. Overtraining, regularization and searching for a minimum, with application to neural networks. International Journal of Control, 62(6):1391–1407.
    • (1995) International Journal of Control , vol.62 , Issue.6 , pp. 1391-1407
    • Sjöberg, J.1    Ljung, L.2
  • 37
    • 0001011680 scopus 로고
    • How universal and specific is emotional experience? evidence from 27 countries on five continents
    • Harald G Wallbott and Klaus R Scherer. 1986. How universal and specific is emotional experience? evidence from 27 countries on five continents. International Social Science Council, 25(4):763–795.
    • (1986) International Social Science Council , vol.25 , Issue.4 , pp. 763-795
    • Wallbott, H.G.1    Scherer, K.R.2
  • 39
    • 84994158553 scopus 로고    scopus 로고
    • Hierarchical attention networks for document classification
    • Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alexander J Smola, and Eduard H Hovy. 2016. Hierarchical attention networks for document classification. In HLT-NAACL.
    • (2016) HLT-NAACL
    • Yang, Z.1    Yang, D.2    Dyer, C.3    He, X.4    Smola, A.J.5    Hovy, E.H.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.