메뉴 건너뛰기




Volumn , Issue , 2013, Pages 607-617

Unsupervised sentiment analysis with emotional signals

Author keywords

Emoticon; Emotional signals; Sentiment analysis; Social correlation; Social media; Twitter

Indexed keywords

SOCIAL NETWORKING (ONLINE);

EID: 84893144737     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2488388.2488442     Document Type: Conference Paper
Times cited : (337)

References (40)
  • 2
    • 84893375204 scopus 로고    scopus 로고
    • Mining wordnet for fuzzy sentiment: Sentiment tag extraction from wordnet glosses
    • A. Andreevskaia and S. Bergler. Mining wordnet for fuzzy sentiment: Sentiment tag extraction from wordnet glosses. In Proceedings of EACL, 2006.
    • (2006) Proceedings of EACL
    • Andreevskaia, A.1    Bergler, S.2
  • 3
    • 78649842272 scopus 로고    scopus 로고
    • Predicting the future with social media
    • S. Asur and B. Huberman. Predicting the future with social media. In WI-IAT, pages 492-499, 2010.
    • (2010) WI-IAT , pp. 492-499
    • Asur, S.1    Huberman, B.2
  • 6
    • 80053220404 scopus 로고    scopus 로고
    • Cooooooooooooooollllllllllllll!!!!!!!!!!!!!!: Using word lengthening to detect sentiment in microblogs
    • S. Brody and N. Diakopoulos. Cooooooooooooooollllllllllllll!!!!!!!!!!!!!!: using word lengthening to detect sentiment in microblogs. In Proceedings of EMNLP, pages 562-570, 2011.
    • (2011) Proceedings of EMNLP , pp. 562-570
    • Brody, S.1    Diakopoulos, N.2
  • 7
    • 84871617105 scopus 로고    scopus 로고
    • Convex and semi-nonnegative matrix factorizations
    • C. Ding, T. Li, and M. Jordan. Convex and semi-nonnegative matrix factorizations. IEEE TPAMI, 32:45-55, 2010.
    • (2010) IEEE TPAMI , vol.32 , pp. 45-55
    • Ding, C.1    Li, T.2    Jordan, M.3
  • 8
    • 33749575326 scopus 로고    scopus 로고
    • Orthogonal nonnegative matrix t-factorizations for clustering
    • C. Ding, T. Li, W. Peng, and H. Park. Orthogonal nonnegative matrix t-factorizations for clustering. In Proceedings of SIGKDD, pages 126-135, 2006.
    • (2006) Proceedings of SIGKDD , pp. 126-135
    • Ding, C.1    Li, T.2    Peng, W.3    Park, H.4
  • 9
    • 2942555318 scopus 로고    scopus 로고
    • High frequency of phenotypic deviations in physcomitrella patens plants transformed with a gene-disruption library
    • T. Egener, J. Granado, and M. Guitton. High frequency of phenotypic deviations in physcomitrella patens plants transformed with a gene-disruption library. BMC Plant Biology, 2:6, 2002.
    • (2002) BMC Plant Biology , vol.2 , pp. 6
    • Egener, T.1    Granado, J.2    Guitton, M.3
  • 10
    • 79953762206 scopus 로고    scopus 로고
    • Twitter sentiment classification using distant supervision
    • A. Go, R. Bhayani, and L. Huang. Twitter sentiment classification using distant supervision. Technical Report, Stanford, pages 1-12, 2009.
    • (2009) Technical Report, Stanford , pp. 1-12
    • Go, A.1    Bhayani, R.2    Huang, L.3
  • 11
    • 70350697580 scopus 로고    scopus 로고
    • Co-clustering on manifolds
    • Q. Gu and J. Zhou. Co-clustering on manifolds. In Proceedings of SIGKDD, pages 359-368, 2009.
    • (2009) Proceedings of SIGKDD , pp. 359-368
    • Gu, Q.1    Zhou, J.2
  • 12
    • 85026972772 scopus 로고    scopus 로고
    • Probabilistic latent semantic indexing
    • T. Hofmann. Probabilistic latent semantic indexing. In Proceedings of SIGIR, pages 50-57, 1999.
    • (1999) Proceedings of SIGIR , pp. 50-57
    • Hofmann, T.1
  • 13
    • 12244305149 scopus 로고    scopus 로고
    • Mining and summarizing customer reviews
    • M. Hu and B. Liu. Mining and summarizing customer reviews. In Proceedings of SIGKDD, 2004.
    • (2004) Proceedings of SIGKDD
    • Hu, M.1    Liu, B.2
  • 14
    • 74549114844 scopus 로고    scopus 로고
    • Exploiting internal and external semantics for the clustering of short texts using world knowledge
    • X. Hu, N. Sun, C. Zhang, and T.-S. Chua. Exploiting internal and external semantics for the clustering of short texts using world knowledge. In Proceedings of CIKM, pages 919-928, 2009.
    • (2009) Proceedings of CIKM , pp. 919-928
    • Hu, X.1    Sun, N.2    Zhang, C.3    Chua, T.-S.4
  • 15
    • 84874258367 scopus 로고    scopus 로고
    • Exploiting social relations for sentiment analysis in microblogging
    • X. Hu, L. Tang, J. Tang, and H. Liu. Exploiting social relations for sentiment analysis in microblogging. In Proceedings of WSDM, 2013.
    • (2013) Proceedings of WSDM
    • Hu, X.1    Tang, L.2    Tang, J.3    Liu, H.4
  • 16
    • 84877953566 scopus 로고    scopus 로고
    • Whoo. Ly: Facilitating information seeking for hyperlocal communities using social media
    • Y. Hu, S. D. Farnham, and A. Monroy-Hernández. Whoo. ly: Facilitating information seeking for hyperlocal communities using social media. In Proceedings of CHI, 2013.
    • (2013) Proceedings of CHI
    • Hu, Y.1    Farnham, S.D.2    Monroy-Hernández, A.3
  • 17
    • 84890754213 scopus 로고    scopus 로고
    • What were the tweets about? Topical associations between public events and twitter feeds
    • Y. Hu, A. John, D. Seligmann, and F. Wang. What were the tweets about? topical associations between public events and twitter feeds. ICWSM, 2012.
    • (2012) ICWSM
    • Hu, Y.1    John, A.2    Seligmann, D.3    Wang, F.4
  • 19
    • 80052110379 scopus 로고    scopus 로고
    • Bridging domains with words: Opinion analysis with matrix tri-factorizations
    • T. Li, V. Sindhwani, C. Ding, and Y. Zhang. Bridging domains with words: Opinion analysis with matrix tri-factorizations. In Proceedings of SDM, 2010.
    • (2010) Proceedings of SDM
    • Li, T.1    Sindhwani, V.2    Ding, C.3    Zhang, Y.4
  • 21
    • 84866007229 scopus 로고    scopus 로고
    • A survey of opinion mining and sentiment analysis
    • B. Liu and L. Zhang. A survey of opinion mining and sentiment analysis. Mining Text Data, 2012.
    • (2012) Mining Text Data
    • Liu, B.1    Zhang, L.2
  • 22
    • 84868274072 scopus 로고    scopus 로고
    • Emoticon smoothed language models for twitter sentiment analysis
    • K.-L. Liu, W.-J. Li, and M. Guo. Emoticon smoothed language models for twitter sentiment analysis. In Proceedings of AAAI, 2012.
    • (2012) Proceedings of AAAI
    • Liu, K.-L.1    Li, W.-J.2    Guo, M.3
  • 23
    • 83655166226 scopus 로고    scopus 로고
    • Automatic construction of a context-aware sentiment lexicon: An optimization approach
    • Y. Lu, M. Castellanos, U. Dayal, and C. Zhai. Automatic construction of a context-aware sentiment lexicon: an optimization approach. In Proceedings of WWW, pages 347-356, 2011.
    • (2011) Proceedings of WWW , pp. 347-356
    • Lu, Y.1    Castellanos, M.2    Dayal, U.3    Zhai, C.4
  • 25
    • 85141803251 scopus 로고    scopus 로고
    • Thumbs up?: Sentiment classification using machine learning techniques
    • B. Pang, L. Lee, and S. Vaithyanathan. Thumbs up?: sentiment classification using machine learning techniques. In Proceedings of ACL, pages 79-86, 2002.
    • (2002) Proceedings of ACL , pp. 79-86
    • Pang, B.1    Lee, L.2    Vaithyanathan, S.3
  • 26
    • 85077250533 scopus 로고    scopus 로고
    • Generate adjective sentiment dictionary for social media sentiment analysis using constrained nonnegative matrix factorization
    • W. Peng and D. H. Park. Generate adjective sentiment dictionary for social media sentiment analysis using constrained nonnegative matrix factorization. In ICWSM, 2011.
    • (2011) ICWSM
    • Peng, W.1    Park, D.H.2
  • 27
    • 79955911987 scopus 로고    scopus 로고
    • Social medias new role in emergency management
    • S. Prentice and E. Huffman. Social medias new role in emergency management. Idaho National Laboratory, pages 1-5, 2008.
    • (2008) Idaho National Laboratory , pp. 1-5
    • Prentice, S.1    Huffman, E.2
  • 28
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • D. Seung and L. Lee. Algorithms for non-negative matrix factorization. NIPS, pages 556-562, 2001.
    • (2001) NIPS , pp. 556-562
    • Seung, D.1    Lee, L.2
  • 29
    • 72149106140 scopus 로고    scopus 로고
    • Tweet the debates: Understanding community annotation of uncollected sources
    • D. Shamma, L. Kennedy, and E. Churchill. Tweet the debates: understanding community annotation of uncollected sources. In Proceedings of WSM, 2009.
    • (2009) Proceedings of WSM
    • Shamma, D.1    Kennedy, L.2    Churchill, E.3
  • 33
    • 84874223723 scopus 로고    scopus 로고
    • Exploiting homophily effect for trust prediction
    • J. Tang, H. Gao, X. Hu, and H. Liu. Exploiting homophily effect for trust prediction. In WSDM, 2013.
    • (2013) WSDM
    • Tang, J.1    Gao, H.2    Hu, X.3    Liu, H.4
  • 34
    • 85136072040 scopus 로고    scopus 로고
    • Thumbs up or thumbs down?: Semantic orientation applied to unsupervised classification of reviews
    • P. Turney. Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews. In Proceedings of ACL, pages 417-424, 2002.
    • (2002) Proceedings of ACL , pp. 417-424
    • Turney, P.1
  • 35
    • 77956195200 scopus 로고    scopus 로고
    • Latent aspect rating analysis on review text data: A rating regression approach
    • H. Wang, Y. Lu, and C. Zhai. Latent aspect rating analysis on review text data: a rating regression approach. In Proceedings of SIGKDD, 2010.
    • (2010) Proceedings of SIGKDD
    • Wang, H.1    Lu, Y.2    Zhai, C.3
  • 36
    • 33644632271 scopus 로고    scopus 로고
    • Annotating expressions of opinions and emotions in language
    • J. Wiebe, T. Wilson, and C. Cardie. Annotating expressions of opinions and emotions in language. Language Resources and Evaluation, 39:165-210, 2005.
    • (2005) Language Resources and Evaluation , vol.39 , pp. 165-210
    • Wiebe, J.1    Wilson, T.2    Cardie, C.3
  • 39
    • 84857188588 scopus 로고    scopus 로고
    • Identifying noun product features that imply opinions
    • L. Zhang and B. Liu. Identifying noun product features that imply opinions. In Proceedings of ACL:HLT, pages 575-580, 2011.
    • (2011) Proceedings of ACL:HLT , pp. 575-580
    • Zhang, L.1    Liu, B.2
  • 40
    • 84866046990 scopus 로고    scopus 로고
    • Moodlens: An emoticon-based sentiment analysis system for chinese tweets
    • J. Zhao, L. Dong, J. Wu, and K. Xu. Moodlens: an emoticon-based sentiment analysis system for chinese tweets. In Proceedings of SIGKDD, 2012.
    • (2012) Proceedings of SIGKDD
    • Zhao, J.1    Dong, L.2    Wu, J.3    Xu, K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.