메뉴 건너뛰기




Volumn , Issue , 2014, Pages 1910-1914

Learning small-size DNN with output-distribution-based criteria

Author keywords

Device; DNN; Learning; Model compression; Output distribution

Indexed keywords

CLUSTERING ALGORITHMS; DIGITAL STORAGE; SPEECH COMMUNICATION;

EID: 84910035297     PISSN: 2308457X     EISSN: 19909772     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (327)

References (17)
  • 3
    • 84055222005 scopus 로고    scopus 로고
    • Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition
    • G. E. Dahl, D. Yu, L. Deng, and A. Acero, "Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition, " IEEE Trans. on Audio, Speech and Language Processing, vol. 20, no. 1, pp. 30-42, 2012.
    • (2012) IEEE Trans. on Audio, Speech and Language Processing , vol.20 , Issue.1 , pp. 30-42
    • Dahl, G.E.1    Yu, D.2    Deng, L.3    Acero, A.4
  • 4
    • 84878539964 scopus 로고    scopus 로고
    • Application of pretrained deep neural networks to large vocabulary speech recognition
    • N. Jaitly, P. Nguyen, and V. Vanhoucke, "Application of pretrained deep neural networks to large vocabulary speech recognition", in Proc. Interspeech, 2012.
    • (2012) Proc. Interspeech
    • Jaitly, N.1    Nguyen, P.2    Vanhoucke, V.3
  • 6
    • 84890491198 scopus 로고    scopus 로고
    • Recent advances in deep learning for speech research at Microsoft
    • L. Deng, J. Li, J. -T. Huang et al. "Recent advances in deep learning for speech research at Microsoft, " in Proc. ICASSP, 2013.
    • (2013) Proc. ICASSP
    • Deng, L.1    Li, J.2    Huang, J.-T.3
  • 7
    • 84890454527 scopus 로고    scopus 로고
    • Low-rank matrix factorization for deep neural network training with high-dimensional output targets
    • T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramabhadran, "Low-rank matrix factorization for deep neural network training with high-dimensional output targets, " in Proc. ICASSP, pp. 6655-6659, 2013.
    • (2013) Proc. ICASSP , pp. 6655-6659
    • Sainath, T.N.1    Kingsbury, B.2    Sindhwani, V.3    Arisoy, E.4    Ramabhadran, B.5
  • 8
    • 84906227589 scopus 로고    scopus 로고
    • Restructuring of deep neural network acoustic models with singular value decomposition
    • J. Xue, J. Li, and Y. Gong, "Restructuring of deep neural network acoustic models with singular value decomposition, " in Proc. Interspeech, pp. 2365-2369, 2013.
    • (2013) Proc. Interspeech , pp. 2365-2369
    • Xue, J.1    Li, J.2    Gong, Y.3
  • 11
    • 84906251664 scopus 로고    scopus 로고
    • Accurate and compact large vocabulary speech recognition on mobile devices
    • X. Lei, A. Senior, A., A. Gruenstein, and J. Sorensen, "Accurate and compact large vocabulary speech recognition on mobile devices, " in Proc. Interspeech, 2013.
    • (2013) Proc. Interspeech
    • Lei, X.1    Senior, A.2    Gruenstein, A.3    Sorensen, J.4
  • 14
    • 84865801413 scopus 로고
    • Tree-based state tying for high accuracy acoustic modelling
    • S. J. Young, J. J. Odell, and P. C. Woodland, "Tree-based state tying for high accuracy acoustic modelling, " in HLT, pp. 307- 312, 1994.
    • (1994) HLT , pp. 307-312
    • Young, S.J.1    Odell, J.J.2    Woodland, P.C.3
  • 16
    • 84890543852 scopus 로고    scopus 로고
    • Error back propagation for sequence training of context-dependent deep networks for conversational speech transcription
    • H. Su, G. Li, D. Yu, and F. Seide, "Error back propagation for sequence training of context-dependent deep networks for conversational speech transcription, " In Proc. ICASSP, 2013.
    • (2013) Proc. ICASSP
    • Su, H.1    Li, G.2    Yu, D.3    Seide, F.4
  • 17
    • 84910072102 scopus 로고    scopus 로고
    • Variable-component deep neural network for robust speech recognition
    • R. Zhao, J. Li, and Y. Gong, "Variable-component deep neural network for robust speech recognition, " In Proc. Interspeech, 2014.
    • (2014) Proc. Interspeech
    • Zhao, R.1    Li, J.2    Gong, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.