메뉴 건너뛰기




Volumn 2016-May, Issue , 2016, Pages 5970-5974

On the compression of recurrent neural networks with an application to LVCSR acoustic modeling for embedded speech recognition

Author keywords

embedded speech recognition; LSTM; model compression; RNN; SVD

Indexed keywords


EID: 84973402069     PISSN: 15206149     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICASSP.2016.7472823     Document Type: Conference Paper
Times cited : (108)

References (28)
  • 1
    • 84865801985 scopus 로고    scopus 로고
    • Conversational speech transcription using context-dependent deep neural networks
    • F. Seide, G. Li, and D. Yu, "Conversational speech transcription using context-dependent deep neural networks, " in Proc. of Interspeech, 2011, pp. 437-440
    • (2011) Proc. of Interspeech , pp. 437-440
    • Seide, F.1    Li, G.2    Yu, D.3
  • 3
    • 84910046405 scopus 로고    scopus 로고
    • Long short-term memory recurrent neural network architectures for large scale acoustic modeling
    • H. Sak, A. Senior, and F. Beaufays, "Long short-term memory recurrent neural network architectures for large scale acoustic modeling, " in Proc. of Interspeech, 2014, pp. 338-342
    • (2014) Proc. of Interspeech , pp. 338-342
    • Sak, H.1    Senior, A.2    Beaufays, F.3
  • 4
    • 84946037134 scopus 로고    scopus 로고
    • Convolutional, long short-term memory, fully connected deep neural networks
    • T. N. Sainath, O. Vinyals, A. Senior, and H. Sak, "Convolutional, long short-term memory, fully connected deep neural networks, " in Proc. of ICASSP, 2015, pp. 4580-4584
    • (2015) Proc. of ICASSP , pp. 4580-4584
    • Sainath, T.N.1    Vinyals, O.2    Senior, A.3    Sak, H.4
  • 5
    • 84903724014 scopus 로고    scopus 로고
    • Deep learning: Methods and applications
    • L. Deng and D. Yu, "Deep learning: methods and applications, " Foundations and Trends in Signal Processing, vol. 7, no. 3-4, pp. 197-387, 2014
    • (2014) Foundations and Trends in Signal Processing , vol.7 , Issue.3-4 , pp. 197-387
    • Deng, L.1    Yu, D.2
  • 7
    • 84906251664 scopus 로고    scopus 로고
    • Accurate and compact large vocabulary speech recognition on mobile devices
    • X. Lei, A. Senior, A. Gruenstein, and J. Sorensen, "Accurate and compact large vocabulary speech recognition on mobile devices, " in Proc. of Interspeech, 2013, pp. 662-665
    • (2013) Proc. of Interspeech , pp. 662-665
    • Lei, X.1    Senior, A.2    Gruenstein, A.3    Sorensen, J.4
  • 8
    • 84906227589 scopus 로고    scopus 로고
    • Restructuring of deep neural network acoustic models with singular value decomposition
    • J. Xue, J. Li, and Y. Gong, "Restructuring of deep neural network acoustic models with singular value decomposition, " in Proc. of Interspeech, 2013, pp. 2365-2369
    • (2013) Proc. of Interspeech , pp. 2365-2369
    • Xue, J.1    Li, J.2    Gong, Y.3
  • 9
    • 84905229915 scopus 로고    scopus 로고
    • Singular value decomposition based low-footprint speaker adaptation and personalization for deep neural network
    • J. Xue, J. Li, D. Yu, M. Seltzer, and Y. Gong, "Singular value decomposition based low-footprint speaker adaptation and personalization for deep neural network, " in Proc. of ICASSP, 2014, pp. 6359-6363
    • (2014) Proc. of ICASSP , pp. 6359-6363
    • Xue, J.1    Li, J.2    Yu, D.3    Seltzer, M.4    Gong, Y.5
  • 11
    • 84928547704 scopus 로고    scopus 로고
    • Sequence to sequence learning with neural networks
    • I. Sutskever, O. Vinyals, and Q. V. Le, "Sequence to sequence learning with neural networks, " in Proc. of NIPS, 2014, pp. 3104-3112
    • (2014) Proc. of NIPS , pp. 3104-3112
    • Sutskever, I.1    Vinyals, O.2    Le, Q.V.3
  • 14
    • 84937961091 scopus 로고    scopus 로고
    • Do deep nets really need to be deep?
    • L. J. Ba and R. Caruana, "Do deep nets really need to be deep, " in Proc. of NIPS, 2014, pp. 2654-2662
    • (2014) Proc. of NIPS , pp. 2654-2662
    • Ba, L.J.1    Caruana, R.2
  • 18
    • 51449103447 scopus 로고    scopus 로고
    • Optimizing bottle-neck features for LVCSR
    • March
    • F. Grézl and P. Fousek, "Optimizing bottle-neck features for LVCSR, " in Proc. of ICASSP, March 2008, pp. 4729-4732
    • (2008) Proc. of ICASSP , pp. 4729-4732
    • Grézl, F.1    Fousek, P.2
  • 19
    • 84890454527 scopus 로고    scopus 로고
    • Low-rank matrix factorization for deep neural network training with high-dimensional output targets
    • T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramabhadran, "Low-rank matrix factorization for deep neural network training with high-dimensional output targets, " in Proc. of ICASSP, 2013, pp. 6655-6659
    • (2013) Proc. of ICASSP , pp. 6655-6659
    • Sainath, T.N.1    Kingsbury, B.2    Sindhwani, V.3    Arisoy, E.4    Ramabhadran, B.5
  • 20
    • 84946014836 scopus 로고    scopus 로고
    • Small-footprint highperformance deep neural network-based speech recognition using split-VQ
    • Y. Wang, J. Li, and Y. Gong, "Small-footprint highperformance deep neural network-based speech recognition using split-VQ, " in Proc. of ICASSP, 2015, pp. 4984-4988
    • (2015) Proc. of ICASSP , pp. 4984-4988
    • Wang, Y.1    Li, J.2    Gong, Y.3
  • 21
  • 22
    • 84946084790 scopus 로고    scopus 로고
    • Learning acoustic frame labeling for speech recognition with recurrent neural networks
    • H. Sak, A. Senior, K. Rao, O. Irsoy, A. Graves, F. Beaufays, and J. Schalkwyk, "Learning acoustic frame labeling for speech recognition with recurrent neural networks, " in Proc. of ICASSP, 2015, pp. 4280-4284
    • (2015) Proc. of ICASSP , pp. 4280-4284
    • Sak, H.1    Senior, A.2    Rao, K.3    Irsoy, O.4    Graves, A.5    Beaufays, F.6    Schalkwyk, J.7
  • 23
    • 84959112739 scopus 로고    scopus 로고
    • Fast and accurate recurrent neural network acoustic models for speech recognition
    • H. Sak, A. Senior, K. Rao, and F. Beaufays, "Fast and accurate recurrent neural network acoustic models for speech recognition, " in Proc. of Interspeech, 2015, pp. 1468-1472
    • (2015) Proc. of Interspeech , pp. 1468-1472
    • Sak, H.1    Senior, A.2    Rao, K.3    Beaufays, F.4
  • 24
    • 33749259827 scopus 로고    scopus 로고
    • Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks
    • A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, "Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks, " in Proc. of ICML, 2006, pp. 369-376
    • (2006) Proc. of ICML , pp. 369-376
    • Graves, A.1    Fernández, S.2    Gomez, F.3    Schmidhuber, J.4
  • 26
    • 70349213445 scopus 로고    scopus 로고
    • Lattice-based optimization of sequence classification criteria for neural-network acoustic modeling
    • B. Kingsbury, "Lattice-based optimization of sequence classification criteria for neural-network acoustic modeling, " in Proc. of ICASSP, 2009, pp. 3761-3764
    • (2009) Proc. of ICASSP , pp. 3761-3764
    • Kingsbury, B.1
  • 27
    • 84910072094 scopus 로고    scopus 로고
    • Sequence discriminative distributed training of long short-term memory recurrent neural networks
    • H. Sak, O. Vinyals, G. Heigold, A. Senior, E. McDermott, R. Monga, and M. Mao, "Sequence discriminative distributed training of long short-term memory recurrent neural networks, " in Proc. of Interspeech, 2014, pp. 1209-1213
    • (2014) Proc. of Interspeech , pp. 1209-1213
    • Sak, H.1    Vinyals, O.2    Heigold, G.3    Senior, A.4    McDermott, E.5    Monga, R.6    Mao, M.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.