메뉴 건너뛰기




Volumn , Issue , 2015, Pages 908-916

Auto-sizing neural networks: With applications to n-gram language models

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL LINGUISTICS; MODELING LANGUAGES;

EID: 84959882423     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.18653/v1/d15-1107     Document Type: Conference Paper
Times cited : (24)

References (19)
  • 4
    • 84906921986 scopus 로고    scopus 로고
    • Fast and robust neural network joint models for statistical machine translation
    • Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas Lamar, Richard Schwartz, and John Makhoul. 2014. Fast and robust neural network joint models for statistical machine translation. In Proc. ACL, pages 1370-1380.
    • (2014) Proc. ACL , pp. 1370-1380
    • Devlin, J.1    Zbib, R.2    Huang, Z.3    Lamar, T.4    Schwartz, R.5    Makhoul, J.6
  • 5
    • 75249102673 scopus 로고    scopus 로고
    • Efficient online and batch learning using forward backward splitting
    • John Duchi and Yoram Singer. 2009. Efficient online and batch learning using forward backward splitting. J. Machine Learning Research, 10:2899-2934.
    • (2009) J. Machine Learning Research , vol.10 , pp. 2899-2934
    • Duchi, J.1    Singer, Y.2
  • 9
    • 84901784231 scopus 로고    scopus 로고
    • RNNLM-recurrent neural network language modeling toolkit
    • Tomas Mikolov, Stefan Kombrink, Anoop Deoras, Lukar Burget, and Jan Cernocky. 2011. RNNLM-recurrent neural network language modeling toolkit. In Proc. ASRU, pages 196-201.
    • (2011) Proc. ASRU , pp. 196-201
    • Mikolov, T.1    Kombrink, S.2    Deoras, A.3    Burget, L.4    Cernocky, J.5
  • 10
    • 84867118996 scopus 로고    scopus 로고
    • A fast and simple algorithm for training neural probabilistic language models
    • Andriy Mnih and Yee Whye Teh. 2012. A fast and simple algorithm for training neural probabilistic language models. In Proc. ICML, pages 1751-1758.
    • (2012) Proc. ICML , pp. 1751-1758
    • Mnih, A.1    Teh, Y.W.2
  • 11
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted boltzmann machines
    • Vinod Nair and Geoffrey E Hinton. 2010. Rectified linear units improve Restricted Boltzmann Machines. In Proc. ICML, pages 807-814.
    • (2010) Proc. ICML , pp. 807-814
    • Nair, V.1    Hinton, G.E.2
  • 12
    • 0001765492 scopus 로고
    • Simplifying neural networks by soft weight-sharing
    • Steven J. Nowland and Geoffrey E. Hinton. 1992. Simplifying neural networks by soft weight-sharing. Neural Computation, 4:473-493.
    • (1992) Neural Computation , vol.4 , pp. 473-493
    • Nowland, S.J.1    Hinton, G.E.2
  • 17
    • 84924036578 scopus 로고    scopus 로고
    • From feedforward to recurrent LSTM neural networks for language modeling
    • Martin Sundermeyer, Hermann Ney, and Ralf Schliiter. 2015. From feedforward to recurrent LSTM neural networks for language modeling. Trans. Audio, Speech, and Language, 23(3):517-529.
    • (2015) Trans. Audio, Speech, and Language , vol.23 , Issue.3 , pp. 517-529
    • Sundermeyer, M.1    Ney, H.2    Schliiter, R.3
  • 18
    • 84926298172 scopus 로고    scopus 로고
    • Decoding with large-scale neural language models improves translation
    • Ashish Vaswani, Yinggong Zhao, Victoria Fossum, and David Chiang. 2013. Decoding with large-scale neural language models improves translation. In Proc. EMNLP, pages 1387-1392.
    • (2013) Proc. EMNLP , pp. 1387-1392
    • Vaswani, A.1    Zhao, Y.2    Fossum, V.3    Chiang, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.