메뉴 건너뛰기




Volumn 20, Issue 7, 2019, Pages 2657-2665

Accounting for Substrate Interactions in the Measurement of the Dimensions of Cellulose Nanofibrils

Author keywords

[No Author keywords available]

Indexed keywords

ATOMIC FORCE MICROSCOPY; CELLULOSE; DEFORMATION; NANOFIBERS; SCANNING ELECTRON MICROSCOPY;

EID: 85068383551     PISSN: 15257797     EISSN: 15264602     Source Type: Journal    
DOI: 10.1021/acs.biomac.9b00432     Document Type: Article
Times cited : (37)

References (51)
  • 1
    • 84881446513 scopus 로고    scopus 로고
    • Nanocellulose: A New Ageless Bionanomaterial
    • Dufresne, A. Nanocellulose: A New Ageless Bionanomaterial. Mater. Today 2013, 16, 220-227, 10.1016/j.mattod.2013.06.004
    • (2013) Mater. Today , vol.16 , pp. 220-227
    • Dufresne, A.1
  • 3
    • 85053290052 scopus 로고    scopus 로고
    • Recent Advances in Surface-Modified Cellulose Nanofibrils
    • Rol, F.; Belgacem, M. N.; Gandini, A.; Bras, J. Recent Advances in Surface-Modified Cellulose Nanofibrils. Prog. Polym. Sci. 2019, 88, 241-264, 10.1016/j.progpolymsci.2018.09.002
    • (2019) Prog. Polym. Sci. , vol.88 , pp. 241-264
    • Rol, F.1    Belgacem, M.N.2    Gandini, A.3    Bras, J.4
  • 5
    • 79959459258 scopus 로고    scopus 로고
    • Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites
    • Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites. Chem. Soc. Rev. 2011, 40, 3941-3994, 10.1039/c0cs00108b
    • (2011) Chem. Soc. Rev. , vol.40 , pp. 3941-3994
    • Moon, R.J.1    Martini, A.2    Nairn, J.3    Simonsen, J.4    Youngblood, J.5
  • 6
    • 85056486387 scopus 로고    scopus 로고
    • Nanocellulose, a Versatile Green Platform: From Biosources to Materials and Their Applications
    • Thomas, B.; Raj, M. C.; B, A. K.; H, R. M.; Joy, J.; Moores, A.; Drisko, G. L.; Sanchez, C. Nanocellulose, a Versatile Green Platform: From Biosources to Materials and Their Applications. Chem. Rev. 2018, 118, 11575-11625, 10.1021/acs.chemrev.7b00627
    • (2018) Chem. Rev. , vol.118 , pp. 11575-11625
    • Thomas, B.1    Raj, M.C.2    Moores, A.3    Drisko, G.L.4    Sanchez, C.5
  • 8
    • 84907967699 scopus 로고    scopus 로고
    • On the Use of Nanocellulose as Reinforcement in Polymer Matrix Composites
    • Lee, K.-Y.; Aitomäki, Y.; Berglund, L. A.; Oksman, K.; Bismarck, A. On the Use of Nanocellulose as Reinforcement in Polymer Matrix Composites. Compos. Sci. Technol. 2014, 105, 15-27, 10.1016/j.compscitech.2014.08.032
    • (2014) Compos. Sci. Technol. , vol.105 , pp. 15-27
    • Lee, K.-Y.1    Aitomäki, Y.2    Berglund, L.A.3    Oksman, K.4    Bismarck, A.5
  • 9
    • 85050187602 scopus 로고    scopus 로고
    • Green Formation of Robust Supraparticles for Cargo Protection and Hazards Control in Natural Environments
    • Mattos, B. D.; Greca, L. G.; Tardy, B. L.; Magalhães, W. L. E.; Rojas, O. J. Green Formation of Robust Supraparticles for Cargo Protection and Hazards Control in Natural Environments. Small 2018, 14, 1801256, 10.1002/smll.201801256
    • (2018) Small , vol.14 , pp. 1801256
    • Mattos, B.D.1    Greca, L.G.2    Tardy, B.L.3    Magalhães, W.L.E.4    Rojas, O.J.5
  • 10
    • 84976869141 scopus 로고    scopus 로고
    • Correlating Cellulose Nanocrystal Particle Size and Surface Area
    • Brinkmann, A.; Chen, M.; Couillard, M.; Jakubek, Z. J.; Leng, T.; Johnston, L. J. Correlating Cellulose Nanocrystal Particle Size and Surface Area. Langmuir 2016, 32, 6105-6114, 10.1021/acs.langmuir.6b01376
    • (2016) Langmuir , vol.32 , pp. 6105-6114
    • Brinkmann, A.1    Chen, M.2    Couillard, M.3    Jakubek, Z.J.4    Leng, T.5    Johnston, L.J.6
  • 11
    • 85047087252 scopus 로고    scopus 로고
    • Effect of Anisotropy of Cellulose Nanocrystal Suspensions on Stratification, Domain Structure Formation, and Structural Colors
    • Klockars, K. W.; Tardy, B. L.; Borghei, M.; Tripathi, A.; Greca, L. G.; Rojas, O. J. Effect of Anisotropy of Cellulose Nanocrystal Suspensions on Stratification, Domain Structure Formation, and Structural Colors. Biomacromolecules 2018, 19, 2931-2943, 10.1021/acs.biomac.8b00497
    • (2018) Biomacromolecules , vol.19 , pp. 2931-2943
    • Klockars, K.W.1    Tardy, B.L.2    Borghei, M.3    Tripathi, A.4    Greca, L.G.5    Rojas, O.J.6
  • 12
    • 84865436419 scopus 로고    scopus 로고
    • SEM Imaging of Chiral Nematic Films Cast from Cellulose Nanocrystal Suspensions
    • Majoinen, J.; Kontturi, E.; Ikkala, O.; Gray, D. G. SEM Imaging of Chiral Nematic Films Cast from Cellulose Nanocrystal Suspensions. Cellulose 2012, 19, 1599-1605, 10.1007/s10570-012-9733-1
    • (2012) Cellulose , vol.19 , pp. 1599-1605
    • Majoinen, J.1    Kontturi, E.2    Ikkala, O.3    Gray, D.G.4
  • 13
    • 84900848312 scopus 로고    scopus 로고
    • Comparison of the Properties of Cellulose Nanocrystals and Cellulose Nanofibrils Isolated from Bacteria, Tunicate, and Wood Processed Using Acid, Enzymatic, Mechanical, and Oxidative Methods
    • Sacui, I. A.; Nieuwendaal, R. C.; Burnett, D. J.; Stranick, S. J.; Jorfi, M.; Weder, C.; Foster, E. J.; Olsson, R. T.; Gilman, J. W. Comparison of the Properties of Cellulose Nanocrystals and Cellulose Nanofibrils Isolated from Bacteria, Tunicate, and Wood Processed Using Acid, Enzymatic, Mechanical, and Oxidative Methods. ACS Appl. Mater. Interfaces 2014, 6, 6127-6138, 10.1021/am500359f
    • (2014) ACS Appl. Mater. Interfaces , vol.6 , pp. 6127-6138
    • Sacui, I.A.1    Nieuwendaal, R.C.2    Burnett, D.J.3    Stranick, S.J.4    Jorfi, M.5    Weder, C.6    Foster, E.J.7    Olsson, R.T.8    Gilman, J.W.9
  • 14
    • 84859807577 scopus 로고    scopus 로고
    • Capillary Bond between Rod-like Particles and the Micromechanics of Particle-Laden Interfaces
    • Botto, L.; Yao, L.; Leheny, R. L.; Stebe, K. J. Capillary Bond between Rod-like Particles and the Micromechanics of Particle-Laden Interfaces. Soft Matter 2012, 8, 4971, 10.1039/c2sm25211b
    • (2012) Soft Matter , vol.8 , pp. 4971
    • Botto, L.1    Yao, L.2    Leheny, R.L.3    Stebe, K.J.4
  • 19
    • 85047066093 scopus 로고    scopus 로고
    • Nanocellulose Fragmentation Mechanisms and Inversion of Chirality from the Single Particle to the Cholesteric Phase
    • Nyström, G.; Arcari, M.; Adamcik, J.; Usov, I.; Mezzenga, R. Nanocellulose Fragmentation Mechanisms and Inversion of Chirality from the Single Particle to the Cholesteric Phase. ACS Nano 2018, 12, 5141-5148, 10.1021/acsnano.8b00512
    • (2018) ACS Nano , vol.12 , pp. 5141-5148
    • Nyström, G.1    Arcari, M.2    Adamcik, J.3    Usov, I.4    Mezzenga, R.5
  • 20
    • 84932644496 scopus 로고    scopus 로고
    • Understanding Nanocellulose Chirality and Structure-Properties Relationship at the Single Fibril Level
    • Usov, I.; Nyström, G.; Adamcik, J.; Handschin, S.; Schütz, C.; Fall, A.; Bergström, L.; Mezzenga, R. Understanding Nanocellulose Chirality and Structure-Properties Relationship at the Single Fibril Level. Nat. Commun. 2015, 6, 7564, 10.1038/ncomms8564
    • (2015) Nat. Commun. , vol.6 , pp. 7564
    • Usov, I.1    Nyström, G.2    Adamcik, J.3    Handschin, S.4    Schütz, C.5    Fall, A.6    Bergström, L.7    Mezzenga, R.8
  • 21
    • 85058705307 scopus 로고    scopus 로고
    • Confinement-Induced Ordering and Self-Folding of Cellulose Nanofibrils
    • Smith, K. B.; Tisserant, J.-N.; Assenza, S.; Arcari, M.; Nyström, G.; Mezzenga, R. Confinement-Induced Ordering and Self-Folding of Cellulose Nanofibrils. Adv. Sci. 2019, 6, 1801540, 10.1002/advs.201801540
    • (2019) Adv. Sci. , vol.6 , pp. 1801540
    • Smith, K.B.1    Tisserant, J.-N.2    Assenza, S.3    Arcari, M.4    Nyström, G.5    Mezzenga, R.6
  • 22
    • 85062720291 scopus 로고    scopus 로고
    • Nanostructural Properties and Twist Periodicity of Cellulose Nanofibrils with Variable Charge Density
    • Arcari, M.; Zuccarella, E.; Axelrod, R.; Adamcik, J.; Sánchez-Ferrer, A.; Mezzenga, R.; Nyström, G. Nanostructural Properties and Twist Periodicity of Cellulose Nanofibrils with Variable Charge Density. Biomacromolecules 2019, 20, 1288-1296, 10.1021/acs.biomac.8b01706
    • (2019) Biomacromolecules , vol.20 , pp. 1288-1296
    • Arcari, M.1    Zuccarella, E.2    Axelrod, R.3    Adamcik, J.4    Sánchez-Ferrer, A.5    Mezzenga, R.6    Nyström, G.7
  • 24
    • 85032701052 scopus 로고    scopus 로고
    • Effect of Fibril Length, Aspect Ratio and Surface Charge on Ultralow Shear-Induced Structuring in Micro and Nanofibrillated Cellulose Aqueous Suspensions
    • Dimic-Misic, K.; Maloney, T.; Gane, P. Effect of Fibril Length, Aspect Ratio and Surface Charge on Ultralow Shear-Induced Structuring in Micro and Nanofibrillated Cellulose Aqueous Suspensions. Cellulose 2018, 25, 117-136, 10.1007/s10570-017-1584-3
    • (2018) Cellulose , vol.25 , pp. 117-136
    • Dimic-Misic, K.1    Maloney, T.2    Gane, P.3
  • 25
    • 0001396520 scopus 로고
    • Atomic Force Microscopy of Cellulose Microfibrils: Comparison with Transmission Electron Microscopy
    • Hanley, S.; Giasson, J.; Revol, J.; Gray, D. Atomic Force Microscopy of Cellulose Microfibrils: Comparison with Transmission Electron Microscopy. Polymer 1992, 33, 4639-4642, 10.1016/0032-3861(92)90426-w
    • (1992) Polymer , vol.33 , pp. 4639-4642
    • Hanley, S.1    Giasson, J.2    Revol, J.3    Gray, D.4
  • 26
    • 0001495420 scopus 로고
    • The Elementary Cellulose Fibril in Picea Abies: Comparison of Transmission Electron Microscopy, Small-Angle X-Ray Scattering, and Wide-Angle X-Ray Scattering Results
    • Jakob, H. F.; Fengel, D.; Tschegg, S. E.; Fratzl, P. The Elementary Cellulose Fibril in Picea Abies: Comparison of Transmission Electron Microscopy, Small-Angle X-Ray Scattering, and Wide-Angle X-Ray Scattering Results. Macromolecules 1995, 28, 8782-8787, 10.1021/ma00130a010
    • (1995) Macromolecules , vol.28 , pp. 8782-8787
    • Jakob, H.F.1    Fengel, D.2    Tschegg, S.E.3    Fratzl, P.4
  • 27
    • 85041528905 scopus 로고    scopus 로고
    • Effective Cellulose Nanocrystal Imaging Using Transmission Electron Microscopy
    • Stinson-Bagby, K. L.; Roberts, R.; Foster, E. J. Effective Cellulose Nanocrystal Imaging Using Transmission Electron Microscopy. Carbohydr. Polym. 2018, 186, 429-438, 10.1016/j.carbpol.2018.01.054
    • (2018) Carbohydr. Polym. , vol.186 , pp. 429-438
    • Stinson-Bagby, K.L.1    Roberts, R.2    Foster, E.J.3
  • 28
    • 85061653404 scopus 로고    scopus 로고
    • Transmission Electron Microscopy of Cellulose. Part 2: Technical and Practical Aspects
    • Ogawa, Y.; Putaux, J.-L. Transmission Electron Microscopy of Cellulose. Part 2: Technical and Practical Aspects. Cellulose 2018, 26, 17-34, 10.1007/s10570-018-2075-x
    • (2018) Cellulose , vol.26 , pp. 17-34
    • Ogawa, Y.1    Putaux, J.-L.2
  • 29
    • 85021157453 scopus 로고    scopus 로고
    • Microfibrillated Cellulose Foams Obtained by a Straightforward Freeze-Thawing-Drying Procedure
    • Josset, S.; Hansen, L.; Orsolini, P.; Griffa, M.; Kuzior, O.; Weisse, B.; Zimmermann, T.; Geiger, T. Microfibrillated Cellulose Foams Obtained by a Straightforward Freeze-Thawing-Drying Procedure. Cellulose 2017, 24, 3825-3842, 10.1007/s10570-017-1377-8
    • (2017) Cellulose , vol.24 , pp. 3825-3842
    • Josset, S.1    Hansen, L.2    Orsolini, P.3    Griffa, M.4    Kuzior, O.5    Weisse, B.6    Zimmermann, T.7    Geiger, T.8
  • 30
    • 85053415026 scopus 로고    scopus 로고
    • Grinding Severity Influences the Viscosity of Cellulose Nanofiber (CNF) Suspensions and Mechanical Properties of Nanopaper
    • Malucelli, L. C.; Matos, M.; Jordão, C.; Lacerda, L. G.; Carvalho Filho, M. A. S.; Magalhães, W. L. E. Grinding Severity Influences the Viscosity of Cellulose Nanofiber (CNF) Suspensions and Mechanical Properties of Nanopaper. Cellulose 2018, 25, 6581-6589, 10.1007/s10570-018-2031-9
    • (2018) Cellulose , vol.25 , pp. 6581-6589
    • Malucelli, L.C.1    Matos, M.2    Jordão, C.3    Lacerda, L.G.4    Carvalho Filho, M.A.S.5    Magalhães, W.L.E.6
  • 32
    • 84978903889 scopus 로고    scopus 로고
    • Understanding Toughness in Bioinspired Cellulose Nanofibril/Polymer Nanocomposites
    • Benítez, A. J.; Lossada, F.; Zhu, B.; Rudolph, T.; Walther, A. Understanding Toughness in Bioinspired Cellulose Nanofibril/Polymer Nanocomposites. Biomacromolecules 2016, 17, 2417-2426, 10.1021/acs.biomac.6b00533
    • (2016) Biomacromolecules , vol.17 , pp. 2417-2426
    • Benítez, A.J.1    Lossada, F.2    Zhu, B.3    Rudolph, T.4    Walther, A.5
  • 33
    • 85012292657 scopus 로고    scopus 로고
    • Cellulose Nanomaterial Reinforced Polymer Nanocomposites
    • Dufresne, A. Cellulose Nanomaterial Reinforced Polymer Nanocomposites. Curr. Opin. Colloid Interface Sci. 2017, 29, 1-8, 10.1016/j.cocis.2017.01.004
    • (2017) Curr. Opin. Colloid Interface Sci. , vol.29 , pp. 1-8
    • Dufresne, A.1
  • 35
    • 84978193696 scopus 로고    scopus 로고
    • Use of Nanocellulose in Printed Electronics: A Review
    • Hoeng, F.; Denneulin, A.; Bras, J. Use of Nanocellulose in Printed Electronics: A Review. Nanoscale 2016, 8, 13131-13154, 10.1039/c6nr03054h
    • (2016) Nanoscale , vol.8 , pp. 13131-13154
    • Hoeng, F.1    Denneulin, A.2    Bras, J.3
  • 36
    • 43149102463 scopus 로고    scopus 로고
    • Model Films from Native Cellulose Nanofibrils. Preparation, Swelling, and Surface Interactions
    • Ahola, S.; Salmi, J.; Johansson, L.-S.; Laine, J.; Österberg, M. Model Films from Native Cellulose Nanofibrils. Preparation, Swelling, and Surface Interactions. Biomacromolecules 2008, 9, 1273-1282, 10.1021/bm701317k
    • (2008) Biomacromolecules , vol.9 , pp. 1273-1282
    • Ahola, S.1    Salmi, J.2    Johansson, L.-S.3    Laine, J.4    Österberg, M.5
  • 37
    • 84861358227 scopus 로고    scopus 로고
    • Template-Directed Synthesis of Silica Nanowires and Nanotubes from Cylindrical Core-Shell Polymer Brushes
    • Müllner, M.; Lunkenbein, T.; Breu, J.; Caruso, F.; Müller, A. H. E. Template-Directed Synthesis of Silica Nanowires and Nanotubes from Cylindrical Core-Shell Polymer Brushes. Chem. Mater. 2012, 24, 1802-1810, 10.1021/cm300312g
    • (2012) Chem. Mater. , vol.24 , pp. 1802-1810
    • Müllner, M.1    Lunkenbein, T.2    Breu, J.3    Caruso, F.4    Müller, A.H.E.5
  • 38
    • 77953073596 scopus 로고    scopus 로고
    • Control of Number Density and Swelling/Shrinking Behavior of P(NIPAM-AAc) Particles at Solid Surfaces
    • Burmistrova, A.; von Klitzing, R. Control of Number Density and Swelling/Shrinking Behavior of P(NIPAM-AAc) Particles at Solid Surfaces. J. Mater. Chem. 2010, 20, 3502-3507, 10.1039/b923969c
    • (2010) J. Mater. Chem. , vol.20 , pp. 3502-3507
    • Burmistrova, A.1    Von Klitzing, R.2
  • 41
    • 84901233941 scopus 로고    scopus 로고
    • Determination of Nanocellulose Fibril Length by Shear Viscosity Measurement
    • Tanaka, R.; Saito, T.; Ishii, D.; Isogai, A. Determination of Nanocellulose Fibril Length by Shear Viscosity Measurement. Cellulose 2014, 21, 1581-1589, 10.1007/s10570-014-0196-4
    • (2014) Cellulose , vol.21 , pp. 1581-1589
    • Tanaka, R.1    Saito, T.2    Ishii, D.3    Isogai, A.4
  • 42
    • 85034108524 scopus 로고    scopus 로고
    • Size Measurements of Standard Nanoparticles Using Metrological Atomic Force Microscope and Evaluation of Their Uncertainties
    • Misumi, I.; Sugawara, K.; Takahata, K.; Takahashi, K.; Ehara, K. Size Measurements of Standard Nanoparticles Using Metrological Atomic Force Microscope and Evaluation of Their Uncertainties. Precis. Eng. 2018, 51, 691-701, 10.1016/j.precisioneng.2017.11.013
    • (2018) Precis. Eng. , vol.51 , pp. 691-701
    • Misumi, I.1    Sugawara, K.2    Takahata, K.3    Takahashi, K.4    Ehara, K.5
  • 43
    • 84927138953 scopus 로고    scopus 로고
    • Correction of the Tip Convolution Effects in the Imaging of Nanostructures Studied through Scanning Force Microscopy
    • Canet-Ferrer, J.; Coronado, E.; Forment-Aliaga, A.; Pinilla-Cienfuegos, E. Correction of the Tip Convolution Effects in the Imaging of Nanostructures Studied through Scanning Force Microscopy. Nanotechnology 2014, 25, 395703, 10.1088/0957-4484/25/39/395703
    • (2014) Nanotechnology , vol.25 , pp. 395703
    • Canet-Ferrer, J.1    Coronado, E.2    Forment-Aliaga, A.3    Pinilla-Cienfuegos, E.4
  • 44
    • 34249883838 scopus 로고    scopus 로고
    • Cellulose Microfibril Aggregates and Their Size Variation with Cell Wall Type
    • Donaldson, L. Cellulose Microfibril Aggregates and Their Size Variation with Cell Wall Type. Wood Sci. Technol. 2007, 41, 443, 10.1007/s00226-006-0121-6
    • (2007) Wood Sci. Technol. , vol.41 , pp. 443
    • Donaldson, L.1
  • 45
    • 85063756043 scopus 로고    scopus 로고
    • Nano-Lignocellulose from Recycled Fibres in Coatings from Aqueous and Ethanolic Media: Effect of Residual Lignin on Wetting and Offset Printing Quality
    • Imani, M.; Ghasemian, A.; Dehghani-Firouzabadi, M. R.; Afra, E.; Gane, P. A. C.; Rojas, P. A. C. Nano-Lignocellulose from Recycled Fibres in Coatings from Aqueous and Ethanolic Media: Effect of Residual Lignin on Wetting and Offset Printing Quality. Nord. Pulp Pap. Res. J. 2019, 34, 200-210, 10.1515/npprj-2018-0053
    • (2019) Nord. Pulp Pap. Res. J. , vol.34 , pp. 200-210
    • Imani, M.1    Ghasemian, A.2    Dehghani-Firouzabadi, M.R.3    Afra, E.4    Gane, P.A.C.5    Rojas, P.A.C.6
  • 46
    • 84855698049 scopus 로고    scopus 로고
    • Zeta Potential Time Dependence Reveals the Swelling Dynamics of Wood Cellulose Nanofibrils
    • Uetani, K.; Yano, H. Zeta Potential Time Dependence Reveals the Swelling Dynamics of Wood Cellulose Nanofibrils. Langmuir 2012, 28, 818-827, 10.1021/la203404g
    • (2012) Langmuir , vol.28 , pp. 818-827
    • Uetani, K.1    Yano, H.2
  • 47
    • 84894648583 scopus 로고    scopus 로고
    • Coordination-Driven Multistep Assembly of Metal-Polyphenol Films and Capsules
    • Rahim, M. A.; Ejima, H.; Cho, K. L.; Kempe, K.; Müllner, M.; Best, J. P.; Caruso, F. Coordination-Driven Multistep Assembly of Metal-Polyphenol Films and Capsules. Chem. Mater. 2014, 26, 1645-1653, 10.1021/cm403903m
    • (2014) Chem. Mater. , vol.26 , pp. 1645-1653
    • Rahim, M.A.1    Ejima, H.2    Cho, K.L.3    Kempe, K.4    Müllner, M.5    Best, J.P.6    Caruso, F.7
  • 48
    • 33751054252 scopus 로고    scopus 로고
    • Ultrastructural Appearance of Embedded and Polished Wood Cell Walls as Revealed by Atomic Force Microscopy
    • Zimmermann, T.; Thommen, V.; Reimann, P.; Hug, H. J. Ultrastructural Appearance of Embedded and Polished Wood Cell Walls as Revealed by Atomic Force Microscopy. J. Struct. Biol. 2006, 156, 363-369, 10.1016/j.jsb.2006.06.007
    • (2006) J. Struct. Biol. , vol.156 , pp. 363-369
    • Zimmermann, T.1    Thommen, V.2    Reimann, P.3    Hug, H.J.4
  • 49
    • 85019868510 scopus 로고    scopus 로고
    • Review of Hydrogels and Aerogels Containing Nanocellulose
    • De France, K. J.; Hoare, T.; Cranston, E. D. Review of Hydrogels and Aerogels Containing Nanocellulose. Chem. Mater. 2017, 29, 4609-4631, 10.1021/acs.chemmater.7b00531
    • (2017) Chem. Mater. , vol.29 , pp. 4609-4631
    • De France, K.J.1    Hoare, T.2    Cranston, E.D.3
  • 50
    • 85029829288 scopus 로고    scopus 로고
    • Aligning Cellulose Nanofibril Dispersions for Tougher Fibers
    • Mohammadi, P.; Toivonen, M. S.; Ikkala, O.; Wagermaier, W.; Linder, M. B. Aligning Cellulose Nanofibril Dispersions for Tougher Fibers. Sci. Rep. 2017, 7, 11860, 10.1038/s41598-017-12107-x
    • (2017) Sci. Rep. , vol.7 , pp. 11860
    • Mohammadi, P.1    Toivonen, M.S.2    Ikkala, O.3    Wagermaier, W.4    Linder, M.B.5
  • 51
    • 84893652132 scopus 로고    scopus 로고
    • The Use of Nanofibrillar Cellulose Hydrogel as a Flexible Three-Dimensional Model to Culture Human Pluripotent Stem Cells
    • Lou, Y.-R.; Kanninen, L.; Kuisma, T.; Niklander, J.; Noon, L. A.; Burks, D.; Urtti, A.; Yliperttula, M. The Use of Nanofibrillar Cellulose Hydrogel as a Flexible Three-Dimensional Model to Culture Human Pluripotent Stem Cells. Stem Cell. Dev. 2014, 23, 380-392, 10.1089/scd.2013.0314
    • (2014) Stem Cell. Dev. , vol.23 , pp. 380-392
    • Lou, Y.-R.1    Kanninen, L.2    Kuisma, T.3    Niklander, J.4    Noon, L.A.5    Burks, D.6    Urtti, A.7    Yliperttula, M.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.