메뉴 건너뛰기




Volumn 132, Issue , 2018, Pages 1394-1403

DeepAirNet: Applying Recurrent Networks for Air Quality Prediction

Author keywords

Air quality; deep learning: recurrent neural network (RNN); feed forwards neural network (FFN); Gated Recurrent Unit (GRU); long short term memory (LSTM); PM10

Indexed keywords

AIR QUALITY; BRAIN; DEEP LEARNING; DEVELOPING COUNTRIES; FORECASTING; NUMERICAL METHODS; TOPOLOGY;

EID: 85049071023     PISSN: None     EISSN: 18770509     Source Type: Conference Proceeding    
DOI: 10.1016/j.procs.2018.05.068     Document Type: Conference Paper
Times cited : (205)

References (23)
  • 1
    • 58449133499 scopus 로고    scopus 로고
    • WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulphur dioxide
    • World Health Organization Google Scholar
    • World Health Organization WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulphur dioxide Global Update 2005.Summary of risk assessment 2005 Google Scholar
    • (2005) Global Update 2005.Summary of Risk Assessment
  • 3
    • 84924196048 scopus 로고    scopus 로고
    • PM2.5 analog forecast and Kalman filter post-processing for the Community Multiscale Air Quality (CMAQ) model.
    • Djalalova I, DelleMonache L, and Wilczak J. PM2.5 analog forecast and Kalman filter post-processing for the Community Multiscale Air Quality (CMAQ) model. Atmospheric Environment 108 2015 76 87
    • (2015) Atmospheric Environment , vol.108 , pp. 76-87
    • Djalalova, I.1    Dellemonache, L.2    Wilczak, J.3
  • 9
    • 79954587065 scopus 로고    scopus 로고
    • Forecasting urban PM10 and PM2.5 pollution episodes in very stable nocturnal conditions and complex terrain using WRF-Chem CO tracer model.
    • Saide P, Carmichael G, Spak S, Gallardo L, Osses A, Mena-Carrasco M, and Pagowski M. Forecasting urban PM10 and PM2.5 pollution episodes in very stable nocturnal conditions and complex terrain using WRF-Chem CO tracer model. Atmospheric Environment 45 2011 2769 2780
    • (2011) Atmospheric Environment , vol.45 , pp. 2769-2780
    • Saide, P.1    Carmichael, G.2    Spak, S.3    Gallardo, L.4    Osses, A.5    Mena-Carrasco, M.6    Pagowski, M.7
  • 11
    • 79958069046 scopus 로고    scopus 로고
    • A study on the potential applications of satellite data in air quality monitoring and forecasting.
    • Li C, Hsu N, and Tsay S. A study on the potential applications of satellite data in air quality monitoring and forecasting. Atmospheric Environment 45 2011 3663 3675
    • (2011) Atmospheric Environment , vol.45 , pp. 3663-3675
    • Li, C.1    Hsu, N.2    Tsay, S.3
  • 12
    • 32944468566 scopus 로고    scopus 로고
    • Statistical models for the prediction of respirable suspended particulate matter in urban cities.
    • Goyal P, Chan A, and Jaiswal N. Statistical models for the prediction of respirable suspended particulate matter in urban cities. Atmospheric Environment 40 2006 2068 2077
    • (2006) Atmospheric Environment , vol.40 , pp. 2068-2077
    • Goyal, P.1    Chan, A.2    Jaiswal, N.3
  • 13
    • 0033880828 scopus 로고    scopus 로고
    • Comparison of neural network models with ARIMA and regression models for prediction of Houston's daily maximum ozone concentrations.
    • Prybutok V, Yi J, and Mitchell D. Comparison of neural network models with ARIMA and regression models for prediction of Houston's daily maximum ozone concentrations. European Journal of Operational Research 122 2000 31 40
    • (2000) European Journal of Operational Research , vol.122 , pp. 31-40
    • Prybutok, V.1    Yi, J.2    Mitchell, D.3
  • 14
    • 53949114438 scopus 로고    scopus 로고
    • A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: The case of Temuco, Chile.
    • Díaz-Robles L, Ortega J, Fu J, Reed G, Chow J, Watson J, and Moncada-Herrera J. A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: The case of Temuco, Chile. Atmospheric Environment 42 2008 8331 8340
    • (2008) Atmospheric Environment , vol.42 , pp. 8331-8340
    • Díaz-Robles, L.1    Ortega, J.2    Fu, J.3    Reed, G.4    Chow, J.5    Watson, J.6    Moncada-Herrera, J.7
  • 16
    • 84933557438 scopus 로고    scopus 로고
    • Dynamically pre-trained deep recurrent neural networks using environmental monitoring data for predicting PM2.5.
    • Ong B, Sugiura K, and Zettsu K. Dynamically pre-trained deep recurrent neural networks using environmental monitoring data for predicting PM2.5. Neural Computing and Applications 27 2015 1553 1566
    • (2015) Neural Computing and Applications , vol.27 , pp. 1553-1566
    • Ong, B.1    Sugiura, K.2    Zettsu, K.3
  • 17
    • 77957840490 scopus 로고    scopus 로고
    • Forecasting air pollutant indicator levels with geographic models 3days in advance using neural networks.
    • Kurt A, and Oktay A. Forecasting air pollutant indicator levels with geographic models 3days in advance using neural networks. Expert Systems with Applications 37 2010 7986 7992
    • (2010) Expert Systems with Applications , vol.37 , pp. 7986-7992
    • Kurt, A.1    Oktay, A.2
  • 19
    • 84987660396 scopus 로고    scopus 로고
    • PM2.5data reliability, consistency, and air quality assessment in five Chinese cities.
    • 10, 236
    • Liang X, Li S, Zhang S, Huang H, and Chen S. PM2.5data reliability, consistency, and air quality assessment in five Chinese cities. Journal of Geophysical Research: Atmospheres 121 2016 220 310 10, -, 236
    • (2016) Journal of Geophysical Research: Atmospheres , vol.121 , pp. 220-310
    • Liang, X.1    Li, S.2    Zhang, S.3    Huang, H.4    Chen, S.5
  • 23
    • 0025503558 scopus 로고
    • Backpropagation through time: What it does and how to do it
    • Werbos PJ. (1990) "Backpropagation through time: what it does and how to do it." Proceedings of the IEEE 78: 1550-60.
    • (1990) Proceedings of the IEEE , vol.78 , pp. 1550-1560
    • Werbos, P.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.