메뉴 건너뛰기




Volumn 2017-December, Issue , 2017, Pages 236-240

Deep neural network for pm2.5 pollution forecasting based on manifold learning

Author keywords

Deep neural network; Forecasting; Manifold learning; PM2.5

Indexed keywords

FORECASTING; NEURAL NETWORKS; POLLUTION; SYSTEMS ENGINEERING;

EID: 85047441990     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/SDPC.2017.52     Document Type: Conference Paper
Times cited : (24)

References (21)
  • 1
    • 84899523078 scopus 로고    scopus 로고
    • Seasonal modeling of pm2.5 in california's san Joaquin Valley
    • August 2014
    • J. Chen, J. Lu, J. C. Avise, "Seasonal modeling of PM2.5 in California's San Joaquin Valley, " Atmos. Environ., vol 92, pp. 182-190, August 2014.
    • Atmos. Environ , vol.92 , pp. 182-190
    • Chen, J.1    Lu, J.2    Avise, J.C.3
  • 2
    • 84924196048 scopus 로고    scopus 로고
    • PM2.5 analog forecast and Kalman filter post-processing for the Community Multiscale Air Quality (CMAQ) model
    • May
    • I. Djalalova, L. D. Monache, J. Wilczak, "PM2.5 analog forecast and Kalman filter post-processing for the Community Multiscale Air Quality (CMAQ) model, " Atmos. Environ., vol 108, pp. 76-87, May 2015.
    • (2015) Atmos. Environ , vol.108 , pp. 76-87
    • Djalalova, I.1    Monache, L.D.2    Wilczak, J.3
  • 3
    • 85013665232 scopus 로고    scopus 로고
    • A novel hybrid-Garch model based on ARIMA and SVM for PM2.5 concentrations forecasting
    • in press
    • P. Wang, H. Zhang, Z. D. Qin, G. S. Zhang, "A novel hybrid-Garch model based on ARIMA and SVM for PM2.5 concentrations forecasting, " Atmos. Pollut. Res., doi.org/10.1016/j.apr.2017.01.003, in press.
    • Atmos. Pollut. Res
    • Wang, P.1    Zhang, H.2    Qin, Z.D.3    Zhang, G.S.4
  • 4
    • 84860676627 scopus 로고    scopus 로고
    • An application of ARIMA model to predict submicron particle concentrations from meteorological factors at a busy roadside in Hangzhou, China
    • June 2012
    • L. Jian, Y. Zhao, Y. P. Zhu, M. Zhang, D. Bertolatti, "An application of ARIMA model to predict submicron particle concentrations from meteorological factors at a busy roadside in Hangzhou, China, " Sci. Total Environ., vol 426, pp. 336-345, June 2012.
    • Sci. Total Environ , vol.426 , pp. 336-345
    • Jian, L.1    Zhao, Y.2    Zhu, Y.P.3    Zhang, M.4    Bertolatti, D.5
  • 5
    • 84877352016 scopus 로고    scopus 로고
    • Ensemble and enhanced PM10 concentration forecast model based on stepwise regression and wavelet analysis
    • August 2013
    • Y. Chen, R. Shi, S. Shu, W. Gao, "Ensemble and enhanced PM10 concentration forecast model based on stepwise regression and wavelet analysis, " Atmos. Environ., vol 74, pp. 346-359, August 2013.
    • Atmos. Environ , vol.74 , pp. 346-359
    • Chen, Y.1    Shi, R.2    Shu, S.3    Gao, W.4
  • 6
    • 70449708596 scopus 로고    scopus 로고
    • Predictiing air pollution using fuzzy genetic linear membership kriging inGIS
    • November
    • R. Shad, S. M. Mohammad, A. Aliakbar, S. Arefeh, "Predictiing air pollution using fuzzy genetic linear membership kriging inGIS, " Comput. Environ. Urban Syst., vol 33, pp. 472-481, November 2009.
    • (2009) Comput. Environ. Urban Syst , vol.33 , pp. 472-481
    • Shad, R.1    Mohammad, S.M.2    Aliakbar, A.3    Arefeh, S.4
  • 7
    • 84864651558 scopus 로고    scopus 로고
    • Neuro fuzzy modeling scheme for the prediction of air pollution
    • December 2010
    • T. E. Alhanafy, F. Zaghlool, A. S. EI, D. Moustafa, "Neuro fuzzy modeling scheme for the prediction of air pollution, " J. Am. Sci., vol 6, pp. 605-616, December 2010.
    • J. Am. Sci , vol.6 , pp. 605-616
    • Alhanafy, T.E.1    Zaghlool, F.2    Ei, A.S.3    Moustafa, D.4
  • 8
    • 84875543548 scopus 로고    scopus 로고
    • Prediction of daily air pollution using wavelet decomposition and Adaptive-Network-based fuzzy inference system
    • September 2011
    • M. Ashish, B. Rashmi, "Prediction of daily air pollution using wavelet decomposition and Adaptive-Network-based fuzzy inference system, " Int. J. Environ. Sci., vol 2, pp. 185-196, September 2011.
    • Int. J. Environ. Sci , vol.2 , pp. 185-196
    • Ashish, M.1    Rashmi, B.2
  • 9
    • 0037380848 scopus 로고    scopus 로고
    • Fuzzy neural identification and forecasting techniques to process experimental urban air pollution data
    • April-May
    • C. F. Morabito, M. Versaci, "Fuzzy neural identification and forecasting techniques to process experimental urban air pollution data, " Neural Netw., vol 16, pp. 493-506, April-May 2003.
    • (2003) Neural Netw , vol.16 , pp. 493-506
    • Morabito, C.F.1    Versaci, M.2
  • 10
    • 33646424119 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy based modeling for predicition of air pollution daily levels in city of Zonguldak
    • September
    • Y. Yildirim, M. Bayramoglu, "Adaptive neuro-fuzzy based modeling for predicition of air pollution daily levels in city of Zonguldak, " Chemosphere, vol 63, pp. 1575-1582, September 2006.
    • (2006) Chemosphere , vol.63 , pp. 1575-1582
    • Yildirim, Y.1    Bayramoglu, M.2
  • 13
    • 84869884924 scopus 로고    scopus 로고
    • Prediction of 24-hour-Average PM2.5 concentration using a hidden Markov model with different emission distributions in Northern California
    • January 2013
    • W. Sun, H. Zhang, A. Palazoglu, A. Singh, W. Zhang, S. Liu, "Prediction of 24-hour-Average PM2.5 concentration using a hidden Markov model with different emission distributions in Northern California " Sci. Total Environ., vol 443, pp. 93-103, January 2013.
    • Sci. Total Environ , vol.443 , pp. 93-103
    • Sun, W.1    Zhang, H.2    Palazoglu, A.3    Singh, A.4    Zhang, W.5    Liu, S.6
  • 14
    • 84941876827 scopus 로고    scopus 로고
    • Prediction of particular matter concentrations by developed feed-forward neural network with rolling mechanism and gray model
    • November 2015
    • M. Fu, W. Wang, Z. Le, M. Khorram, "Prediction of particular matter concentrations by developed feed-forward neural network with rolling mechanism and gray model, " Neural Comput. Appl., vol 26, pp. 1789-1797, November 2015.
    • Neural Comput. Appl , vol.26 , pp. 1789-1797
    • Fu, M.1    Wang, W.2    Le, Z.3    Khorram, M.4
  • 15
    • 84964952463 scopus 로고    scopus 로고
    • Air pollutants concentrations forecasting using back propagation neural network based on wavelet decomposition with meteorological conditions
    • May 2016
    • Y. Bai, Y. Li, X. X. Wang, J. J. Xie, C. Li, "Air pollutants concentrations forecasting using back propagation neural network based on wavelet decomposition with meteorological conditions, " Atmos. Pollut. Res., vol 7, pp. 557-566, May 2016.
    • Atmos. Pollut. Res , vol.7 , pp. 557-566
    • Bai, Y.1    Li, Y.2    Wang, X.X.3    Xie, J.J.4    Li, C.5
  • 16
    • 84933504534 scopus 로고    scopus 로고
    • Using wavelet-feedforward neural networks to improve air pollution forecasting in urban environments
    • July 2015
    • D. Dunea, A. Pohoata, S. Iordache, "Using wavelet-feedforward neural networks to improve air pollution forecasting in urban environments, " Environ. Monit. Assess, vol 187, pp. 477-492, July 2015.
    • Environ. Monit. Assess , vol.187 , pp. 477-492
    • Dunea, D.1    Pohoata, A.2    Iordache, S.3
  • 17
    • 79955578106 scopus 로고    scopus 로고
    • Artificial neural network models for daily PM10 air poiiution index prediction in the urban area of Wuhan, China
    • April 2011
    • S. Wu, Q. Feng, Y. Du, X. Li, "Artificial neural network models for daily PM10 air poiiution index prediction in the urban area of Wuhan, China, " Environ. Eng. Sci., vol 28, pp.357-363, April 2011.
    • Environ. Eng. Sci , vol.28 , pp. 357-363
    • Wu, S.1    Feng, Q.2    Du, Y.3    Li, X.4
  • 18
    • 84878935220 scopus 로고    scopus 로고
    • Forecasting human exposure to PM10 at the national level using an artificial neural network apporach
    • May
    • D. Z. Antanasijevic, M. Ristic, A. Peric-Grujic, V. Pocajt, "Forecasting human exposure to PM10 at the national level using an artificial neural network apporach, " J. Chemom., vol 27, pp. 170-177, May 2013.
    • (2013) J. Chemom , vol.27 , pp. 170-177
    • Antanasijevic, D.Z.1    Ristic, M.2    Peric-Grujic, A.3    Pocajt, V.4
  • 19
    • 85019769810 scopus 로고    scopus 로고
    • A multi-pattern deep fusion model for short-Term bus passenger flow forecasting
    • in press
    • Y. Bai, Z. Z. Sun, B. Zeng, J. Deng, C. Li. "A multi-pattern deep fusion model for short-Term bus passenger flow forecasting, " Appl. Soft Comput., doi: 10.1016/j.asoc.2017.05.011, in press.
    • Appl. Soft Comput
    • Bai, Y.1    Sun, Z.Z.2    Zeng, B.3    Deng C Li, J.4
  • 20
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • December
    • S. Roweis, L. Saul, "Nonlinear dimensionality reduction by locally linear embedding, " Sci., vol 290, pp. 2323-2326, December 2000.
    • (2000) Sci , vol.290 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 21
    • 84871391768 scopus 로고    scopus 로고
    • Unsupervised feature learning and deep learning: A review and new perspectives
    • arXiv: 1206.5538v3
    • Y. Bengio, A. Courville, and P. Vincent P, "Unsupervised feature learning and deep learning: A review and new perspectives, " Cornell University Library, 2014, arXiv: 1206.5538v3
    • (2014) Cornell University Library
    • Bengio, Y.1    Courville, A.2    Vincent P, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.