메뉴 건너뛰기




Volumn 2015-January, Issue , 2015, Pages 3995-4001

Deep convolutional neural networks on multichannel time series for human activity recognition

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CONVOLUTION; NETWORK ARCHITECTURE; NEURAL NETWORKS; PATTERN RECOGNITION; TIME SERIES;

EID: 84949810460     PISSN: 10450823     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (1130)

References (25)
  • 1
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • January
    • Yoshua Bengio. Learning deep architectures for AI. Found. Trends Mach. Learn., 2(1):1-127, January 2009.
    • (2009) Found. Trends Mach. Learn. , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 2
    • 84893936376 scopus 로고    scopus 로고
    • A tutorial on human activity recognition using body-worn inertial sensors
    • Andreas Bulling, Ulf Blanke, and Bernt Schiele. A tutorial on human activity recognition using body-worn inertial sensors. ACM Computing Surveys., 46(3):33:1-33:33, 2014.
    • (2014) ACM Computing Surveys. , vol.46 , Issue.3 , pp. 331-3333
    • Bulling, A.1    Blanke, U.2    Schiele, B.3
  • 5
    • 84956802323 scopus 로고    scopus 로고
    • A tutorial survey of architectures, algorithms, and applications for deep learning
    • Li Deng. A tutorial survey of architectures, algorithms, and applications for deep learning. APSIPA Transactions on Signal and Information Processing, 2014.
    • (2014) APSIPA Transactions on Signal and Information Processing
    • Li, D.1
  • 6
    • 84919881041 scopus 로고    scopus 로고
    • DeCAF: A deep convolutional activation feature for generic visual recognition
    • Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor Darrell. DeCAF: A deep convolutional activation feature for generic visual recognition. In ICML, 2014.
    • (2014) ICML
    • Donahue, J.1    Jia, Y.2    Vinyals, O.3    Hoffman, J.4    Zhang, N.5    Tzeng, E.6    Darrell, T.7
  • 7
    • 0019152630 scopus 로고
    • Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4):193-202, 1980.
    • (1980) Biological Cybernetics , vol.36 , Issue.4 , pp. 193-202
    • Fukushima, K.1
  • 8
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Geoffrey E. Hinton and Simon Osindero. A fast learning algorithm for deep belief nets. Neural Computation, 18(7):1527-1554, 2006.
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2
  • 10
    • 77956507967 scopus 로고    scopus 로고
    • 3d convolutional neural networks for human action recognition
    • Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d convolutional neural networks for human action recognition. In ICML, 2010.
    • (2010) ICML
    • Ji, S.1    Xu, W.2    Yang, M.3    Yu, K.4
  • 12
    • 0242709395 scopus 로고    scopus 로고
    • On the need for time series data mining benchmarks: A survey and empirical demonstration
    • Eamonn Keogh and Shruti Kasetty. On the need for time series data mining benchmarks: A survey and empirical demonstration. In SIGKDD, 2002.
    • (2002) SIGKDD
    • Keogh, E.1    Kasetty, S.2
  • 13
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 14
    • 80052874098 scopus 로고    scopus 로고
    • Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis
    • Q. V. Le, W. Y. Zou, S. Y. Yeung, and A. Y. Ng. Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis. CVPR, 2011.
    • (2011) CVPR
    • Le, Q.V.1    Zou, W.Y.2    Yeung, S.Y.3    Ng, A.Y.4
  • 15
    • 45749110924 scopus 로고    scopus 로고
    • Representational power of restricted boltzmann machines and deep belief networks
    • Nicolas Le Roux and Yoshua Bengio. Representational power of restricted Boltzmann machines and deep belief networks. Neural Computation, 20(6):1631-1649, 2008.
    • (2008) Neural Computation , vol.20 , Issue.6 , pp. 1631-1649
    • Roux, N.L.1    Bengio, Y.2
  • 18
    • 84949874584 scopus 로고    scopus 로고
    • Feature learning for activity recognition in ubiquitous computing
    • Thomas Plätz, Nils Y. Hammerla, and Patrick Olivier. Feature learning for activity recognition in ubiquitous computing. In IJCAI, 2012.
    • (2012) IJCAI
    • Plätz, T.1    Hammerla, N.Y.2    Olivier, P.3
  • 22
    • 56449086223 scopus 로고    scopus 로고
    • Training restricted boltzmann machines using approximations to the likelihood gradient
    • Tijmen Tieleman. Training restricted boltzmann machines using approximations to the likelihood gradient. In ICML, 2008.
    • (2008) ICML
    • Tieleman, T.1
  • 23
    • 85017327397 scopus 로고    scopus 로고
    • Deep learning for content-based image retrieval: A comprehensive study
    • Ji Wan, Dayong Wang, Steven Chu Hong Hoi, Pengcheng Wu, Jianke Zhu, Yongdong Zhang, and Jintao Li. Deep learning for content-based image retrieval: A comprehensive study. In ACM MM, 2014.
    • (2014) ACM MM
    • Ji, W.1    Wang, D.2    Hoi, S.C.H.3    Wu, P.4    Zhu, J.5    Zhang, Y.6    Li, J.7
  • 24
    • 84921476116 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • Matt Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. ECCV, 2014.
    • (2014) ECCV
    • Zeiler, M.1    Fergus, R.2
  • 25
    • 84924404957 scopus 로고    scopus 로고
    • Convolutional neural networks for human activity recognition using mobile sensors
    • Ming Zeng, Le T. Nguyen, Bo Yu, Ole J. Mengshoel, Jiang Zhu, Pang Wu, and Joy Zhang. Convolutional neural networks for human activity recognition using mobile sensors. In MobiCASE, 2014.
    • (2014) MobiCASE
    • Zeng, M.1    Nguyen, L.T.2    Bo, Y.3    Mengshoel, O.J.4    Zhu, J.5    Wu, P.6    Joy, Z.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.