-
1
-
-
69349090197
-
Learning deep architectures for AI
-
January
-
Yoshua Bengio. Learning deep architectures for AI. Found. Trends Mach. Learn., 2(1):1-127, January 2009.
-
(2009)
Found. Trends Mach. Learn.
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
-
2
-
-
84893936376
-
A tutorial on human activity recognition using body-worn inertial sensors
-
Andreas Bulling, Ulf Blanke, and Bernt Schiele. A tutorial on human activity recognition using body-worn inertial sensors. ACM Computing Surveys., 46(3):33:1-33:33, 2014.
-
(2014)
ACM Computing Surveys.
, vol.46
, Issue.3
, pp. 331-3333
-
-
Bulling, A.1
Blanke, U.2
Schiele, B.3
-
3
-
-
84867457327
-
An integrated framework for human activity classific
-
Hong Cao, Minh Nhut Nguyen, Clifton Phua, Shonali Krishnaswamy, and Xiao Li Li. An integrated framework for human activity classific. In ACM International Conference on Ubiquitous Computing, 2012.
-
(2012)
ACM International Conference on Ubiquitous Computing
-
-
Cao, H.1
Nguyen, M.N.2
Phua, C.3
Krishnaswamy, S.4
Li, X.L.5
-
4
-
-
84890491198
-
Recent advances in deep learning for speech research at microsoft
-
Li Deng, Jinyu Li, Jui-Ting Huang, Kaisheng Yao, Dong Yu, Frank Seide, Michael Seltzer, Geoff Zweig, Xiaodong He, Jason Williams, Yifan Gong, and Alex Acero. Recent advances in deep learning for speech research at microsoft. ICASSP, 2013.
-
(2013)
ICASSP
-
-
Li, D.1
Li, J.2
Huang, J.-T.3
Yao, K.4
Yu, D.5
Seide, F.6
Seltzer, M.7
Zweig, G.8
He, X.9
Williams, J.10
Gong, Y.11
Acero, A.12
-
5
-
-
84956802323
-
A tutorial survey of architectures, algorithms, and applications for deep learning
-
Li Deng. A tutorial survey of architectures, algorithms, and applications for deep learning. APSIPA Transactions on Signal and Information Processing, 2014.
-
(2014)
APSIPA Transactions on Signal and Information Processing
-
-
Li, D.1
-
6
-
-
84919881041
-
DeCAF: A deep convolutional activation feature for generic visual recognition
-
Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor Darrell. DeCAF: A deep convolutional activation feature for generic visual recognition. In ICML, 2014.
-
(2014)
ICML
-
-
Donahue, J.1
Jia, Y.2
Vinyals, O.3
Hoffman, J.4
Zhang, N.5
Tzeng, E.6
Darrell, T.7
-
7
-
-
0019152630
-
Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
-
Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4):193-202, 1980.
-
(1980)
Biological Cybernetics
, vol.36
, Issue.4
, pp. 193-202
-
-
Fukushima, K.1
-
8
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Geoffrey E. Hinton and Simon Osindero. A fast learning algorithm for deep belief nets. Neural Computation, 18(7):1527-1554, 2006.
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
-
10
-
-
77956507967
-
3d convolutional neural networks for human action recognition
-
Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d convolutional neural networks for human action recognition. In ICML, 2010.
-
(2010)
ICML
-
-
Ji, S.1
Xu, W.2
Yang, M.3
Yu, K.4
-
11
-
-
85009867858
-
Caffe: Convolutional architecture for fast feature embedding
-
Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature embedding. In ACM MM, 2014.
-
(2014)
ACM MM
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
12
-
-
0242709395
-
On the need for time series data mining benchmarks: A survey and empirical demonstration
-
Eamonn Keogh and Shruti Kasetty. On the need for time series data mining benchmarks: A survey and empirical demonstration. In SIGKDD, 2002.
-
(2002)
SIGKDD
-
-
Keogh, E.1
Kasetty, S.2
-
13
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
14
-
-
80052874098
-
Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis
-
Q. V. Le, W. Y. Zou, S. Y. Yeung, and A. Y. Ng. Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis. CVPR, 2011.
-
(2011)
CVPR
-
-
Le, Q.V.1
Zou, W.Y.2
Yeung, S.Y.3
Ng, A.Y.4
-
15
-
-
45749110924
-
Representational power of restricted boltzmann machines and deep belief networks
-
Nicolas Le Roux and Yoshua Bengio. Representational power of restricted Boltzmann machines and deep belief networks. Neural Computation, 20(6):1631-1649, 2008.
-
(2008)
Neural Computation
, vol.20
, Issue.6
, pp. 1631-1649
-
-
Roux, N.L.1
Bengio, Y.2
-
16
-
-
84872543023
-
Efficient backprop
-
Y. LeCun, L. Bottou, G. Orr, and K. Muller. Efficient backprop. Neural Networks: Tricks of the trade, pages 9-50, 1998.
-
(1998)
Neural Networks: Tricks of the Trade
, pp. 9-50
-
-
LeCun, Y.1
Bottou, L.2
Orr, G.3
Muller, K.4
-
17
-
-
33745781710
-
A symbolic representation of time series, with implications for streaming algorithms
-
Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Bill Chiu. A symbolic representation of time series, with implications for streaming algorithms. In SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, 2003.
-
(2003)
SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery
-
-
Lin, J.1
Keogh, E.2
Lonardi, S.3
Chiu, B.4
-
18
-
-
84949874584
-
Feature learning for activity recognition in ubiquitous computing
-
Thomas Plätz, Nils Y. Hammerla, and Patrick Olivier. Feature learning for activity recognition in ubiquitous computing. In IJCAI, 2012.
-
(2012)
IJCAI
-
-
Plätz, T.1
Hammerla, N.Y.2
Olivier, P.3
-
19
-
-
77749264950
-
Using mobile phones to determine transportation modes
-
March
-
Sasank Reddy, Min Mun, Jeff Burke, Deborah Estrin, Mark Hansen, and Mani Srivastava. Using mobile phones to determine transportation modes. ACM Transactions on Sensor Networks, 6(2):13:1-13:27, March 2010.
-
(2010)
ACM Transactions on Sensor Networks
, vol.6
, Issue.2
, pp. 131-1327
-
-
Reddy, S.1
Min, M.2
Burke, J.3
Estrin, D.4
Hansen, M.5
Srivastava, M.6
-
20
-
-
78149236604
-
Collecting complex activity data sets in highly rich networked sensor environments
-
Kassel, Germany
-
Daniel Roggen, Alberto Calatroni, Mirco Rossi, Thomas Holleczek, Kilian Förster, Gerhard Tröster, Paul Lukowicz, David Bannach, Gerald Pirkl, Alois Ferscha, Jakob Doppler, Clemens Holzmann, Marc Kurz, Gerald Holl, Ricardo Chavarriaga, Marco Creatura, and José del R. Milln. Collecting complex activity data sets in highly rich networked sensor environments. In Proceedings of the Seventh International Conference on Networked Sensing Systems (INSS), Kassel, Germany, 2010.
-
(2010)
Proceedings of the Seventh International Conference on Networked Sensing Systems (INSS)
-
-
Roggen, D.1
Calatroni, A.2
Rossi, M.3
Holleczek, T.4
Förster, K.5
Tröster, G.6
Lukowicz, P.7
Bannach, D.8
Pirkl, G.9
Ferscha, A.10
Doppler, J.11
Holzmann, C.12
Kurz, M.13
Holl, G.14
Chavarriaga, R.15
Creatura, M.16
Del Milln, J.R.17
-
22
-
-
56449086223
-
Training restricted boltzmann machines using approximations to the likelihood gradient
-
Tijmen Tieleman. Training restricted boltzmann machines using approximations to the likelihood gradient. In ICML, 2008.
-
(2008)
ICML
-
-
Tieleman, T.1
-
23
-
-
85017327397
-
Deep learning for content-based image retrieval: A comprehensive study
-
Ji Wan, Dayong Wang, Steven Chu Hong Hoi, Pengcheng Wu, Jianke Zhu, Yongdong Zhang, and Jintao Li. Deep learning for content-based image retrieval: A comprehensive study. In ACM MM, 2014.
-
(2014)
ACM MM
-
-
Ji, W.1
Wang, D.2
Hoi, S.C.H.3
Wu, P.4
Zhu, J.5
Zhang, Y.6
Li, J.7
-
24
-
-
84921476116
-
Visualizing and understanding convolutional networks
-
Matt Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. ECCV, 2014.
-
(2014)
ECCV
-
-
Zeiler, M.1
Fergus, R.2
-
25
-
-
84924404957
-
Convolutional neural networks for human activity recognition using mobile sensors
-
Ming Zeng, Le T. Nguyen, Bo Yu, Ole J. Mengshoel, Jiang Zhu, Pang Wu, and Joy Zhang. Convolutional neural networks for human activity recognition using mobile sensors. In MobiCASE, 2014.
-
(2014)
MobiCASE
-
-
Zeng, M.1
Nguyen, L.T.2
Bo, Y.3
Mengshoel, O.J.4
Zhu, J.5
Wu, P.6
Joy, Z.7
|