-
1
-
-
85059505417
-
Engineering nanoparticles for targeted remodeling of the tumor microenvironment to improve cancer immunotherapy
-
Gao S, Yang D, Fang Y, Lin X, Jin X, Wang Q, et al. Engineering Nanoparticles for Targeted Remodeling of the Tumor Microenvironment to Improve Cancer Immunotherapy. Theranostics. 2019; 9: 126-51.
-
(2019)
Theranostics
, vol.9
, pp. 126-151
-
-
Gao, S.1
Yang, D.2
Fang, Y.3
Lin, X.4
Jin, X.5
Wang, Q.6
-
2
-
-
84941343279
-
Releasing the brakes on cancer immunotherapy
-
Littman DR. Releasing the Brakes on Cancer Immunotherapy. Cell. 2015; 162: 1186-90.
-
(2015)
Cell
, vol.162
, pp. 1186-1190
-
-
Littman, D.R.1
-
3
-
-
84873023311
-
Harnessing the power of the immune system to target cancer
-
Lizee G, Overwijk WW, Radvanyi L, Gao J, Sharma P, Hwu P. Harnessing the power of the immune system to target cancer. Annu Rev Med. 2013; 64: 71-90.
-
(2013)
Annu Rev Med
, vol.64
, pp. 71-90
-
-
Lizee, G.1
Overwijk, W.W.2
Radvanyi, L.3
Gao, J.4
Sharma, P.5
Hwu, P.6
-
4
-
-
84941655113
-
Cancer immunotherapy: Harnessing the immune system to battle cancer
-
Yang Y. Cancer immunotherapy: harnessing the immune system to battle cancer. J Clin Invest. 2015; 125: 3335-7.
-
(2015)
J Clin Invest
, vol.125
, pp. 3335-3337
-
-
Yang, Y.1
-
5
-
-
85034649195
-
Targeting immune checkpoints in cancer therapy
-
Topalian SL. Targeting Immune Checkpoints in Cancer Therapy. JAMA. 2017; 318: 1647-8.
-
(2017)
JAMA
, vol.318
, pp. 1647-1648
-
-
Topalian, S.L.1
-
6
-
-
84984985578
-
Releasing the brakes to fight cancer: The recent discovery of checkpoints has boosted the field of cancer immunotherapy
-
Weigmann K. Releasing the brakes to fight cancer: The recent discovery of checkpoints has boosted the field of cancer immunotherapy. EMBO Rep. 2016; 17: 1257-60.
-
(2016)
EMBO Rep
, vol.17
, pp. 1257-1260
-
-
Weigmann, K.1
-
7
-
-
84922668738
-
Targeting the TGFbeta pathway for cancer therapy
-
Neuzillet C, Tijeras-Raballand A, Cohen R, Cros J, Faivre S, Raymond E, et al. Targeting the TGFbeta pathway for cancer therapy. Pharmacol Ther. 2015; 147: 22-31.
-
(2015)
Pharmacol Ther
, vol.147
, pp. 22-31
-
-
Neuzillet, C.1
Tijeras-Raballand, A.2
Cohen, R.3
Cros, J.4
Faivre, S.5
Raymond, E.6
-
8
-
-
37149042061
-
Semi-mechanistic modelling of the tumour growth inhibitory effects of LY2157299, a new type I receptor TGF-beta kinase antagonist, in mice
-
Bueno L, de Alwis DP, Pitou C, Yingling J, Lahn M, Glatt S, et al. Semi-mechanistic modelling of the tumour growth inhibitory effects of LY2157299, a new type I receptor TGF-beta kinase antagonist, in mice. Eur J Cancer. 2008; 44: 142-50.
-
(2008)
Eur J Cancer
, vol.44
, pp. 142-150
-
-
Bueno, L.1
De Alwis, D.P.2
Pitou, C.3
Yingling, J.4
Lahn, M.5
Glatt, S.6
-
9
-
-
0037899935
-
Improving the evaluation of new cancer treatments: Challenges and opportunities
-
Rothenberg ML, Carbone DP, Johnson DH. Improving the evaluation of new cancer treatments: challenges and opportunities. Nat Rev Cancer. 2003; 3: 303-9.
-
(2003)
Nat Rev Cancer
, vol.3
, pp. 303-309
-
-
Rothenberg, M.L.1
Carbone, D.P.2
Johnson, D.H.3
-
10
-
-
85039783649
-
Tumor mutational burden and response rate to PD-1 inhibition
-
Yarchoan M, Hopkins A, Jaffee EM. Tumor Mutational Burden and Response Rate to PD-1 Inhibition. N Engl J Med. 2017; 377: 2500-1.
-
(2017)
N Engl J Med
, vol.377
, pp. 2500-2501
-
-
Yarchoan, M.1
Hopkins, A.2
Jaffee, E.M.3
-
11
-
-
84975059616
-
Resistance mechanisms to immune-checkpoint blockade in cancer: Tumor-intrinsic and -extrinsic factors
-
Pitt JM, Vetizou M, Daillere R, Roberti MP, Yamazaki T, Routy B, et al. Resistance Mechanisms to Immune-Checkpoint Blockade in Cancer: Tumor-Intrinsic and -Extrinsic Factors. Immunity. 2016; 44: 1255-69.
-
(2016)
Immunity
, vol.44
, pp. 1255-1269
-
-
Pitt, J.M.1
Vetizou, M.2
Daillere, R.3
Roberti, M.P.4
Yamazaki, T.5
Routy, B.6
-
12
-
-
84866985855
-
Targeting the TGFbeta signalling pathway in disease
-
Akhurst RJ, Hata A. Targeting the TGFbeta signalling pathway in disease. Nat Rev Drug Discov. 2012; 11: 790-811.
-
(2012)
Nat Rev Drug Discov
, vol.11
, pp. 790-811
-
-
Akhurst, R.J.1
Hata, A.2
-
15
-
-
85045141286
-
The gut microbiota influences anticancer immunosurveillance and general health
-
Routy B, Gopalakrishnan V, Daillere R, Zitvogel L, Wargo JA, Kroemer G. The gut microbiota influences anticancer immunosurveillance and general health. Nat Rev Clin Oncol. 2018; 15: 382-96.
-
(2018)
Nat Rev Clin Oncol
, vol.15
, pp. 382-396
-
-
Routy, B.1
Gopalakrishnan, V.2
Daillere, R.3
Zitvogel, L.4
Wargo, J.A.5
Kroemer, G.6
-
16
-
-
84994442818
-
Microbiota as a mediator of cancer progression and therapy
-
Pope JL, Tomkovich S, Yang Y, Jobin C. Microbiota as a mediator of cancer progression and therapy. Transl Res. 2017; 179: 139-54.
-
(2017)
Transl Res
, vol.179
, pp. 139-154
-
-
Pope, J.L.1
Tomkovich, S.2
Yang, Y.3
Jobin, C.4
-
17
-
-
84888638819
-
The microbiome and cancer
-
Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer. 2013; 13: 800-12.
-
(2013)
Nat Rev Cancer
, vol.13
, pp. 800-812
-
-
Schwabe, R.F.1
Jobin, C.2
-
18
-
-
85033576428
-
Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors
-
Routy B, Le Chatelier E. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018; 359: 91-7.
-
(2018)
Science
, vol.359
, pp. 91-97
-
-
Routy, B.1
Le Chatelier, E.2
-
19
-
-
84948461699
-
Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota
-
Vetizou M, Pitt JM, Daillere R, Lepage P, Waldschmitt N, Flament C, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015; 350: 1079-84.
-
(2015)
Science
, vol.350
, pp. 1079-1084
-
-
Vetizou, M.1
Pitt, J.M.2
Daillere, R.3
Lepage, P.4
Waldschmitt, N.5
Flament, C.6
-
20
-
-
84992188321
-
Escherichia coli strain Nissle 1917-from bench to bedside and back: History of a special Escherichia coli strain with probiotic properties
-
Sonnenborn U. Escherichia coli strain Nissle 1917-from bench to bedside and back: history of a special Escherichia coli strain with probiotic properties. FEMS Microbiol Lett. 2016; 363.
-
(2016)
FEMS Microbiol Lett
, vol.363
-
-
Sonnenborn, U.1
-
21
-
-
85029724766
-
Oral administration of the probiotic strain Escherichia coli nissle 1917 reduces susceptibility to neuroinflammation and repairs experimental autoimmune encephalomyelitis-induced intestinal barrier dysfunction
-
Secher T, Kassem S, Benamar M, Bernard I, Boury M, Barreau F, et al. Oral administration of the probiotic strain Escherichia coli nissle 1917 reduces susceptibility to neuroinflammation and repairs experimental autoimmune encephalomyelitis-induced intestinal barrier dysfunction. Front Immunol. 2017; 8: 1096.
-
(2017)
Front Immunol
, vol.8
, pp. 1096
-
-
Secher, T.1
Kassem, S.2
Benamar, M.3
Bernard, I.4
Boury, M.5
Barreau, F.6
-
22
-
-
84978969338
-
Role and mechanisms of action of Escherichia coli Nissle 1917 in the maintenance of remission in ulcerative colitis patients: An update
-
Scaldaferri F, Gerardi V, Mangiola F, Lopetuso LR, Pizzoferrato M, Petito V, et al. Role and mechanisms of action of Escherichia coli Nissle 1917 in the maintenance of remission in ulcerative colitis patients: An update. World J Gastroenterol. 2016; 22: 5505-11.
-
(2016)
World J Gastroenterol
, vol.22
, pp. 5505-5511
-
-
Scaldaferri, F.1
Gerardi, V.2
Mangiola, F.3
Lopetuso, L.R.4
Pizzoferrato, M.5
Petito, V.6
-
23
-
-
58149327459
-
F1C fimbriae play an important role in biofilm formation and intestinal colonization by the Escherichia coli commensal strain Nissle 1917
-
Lasaro MA, Salinger N, Zhang J, Wang Y, Zhong Z, Goulian M, et al. F1C fimbriae play an important role in biofilm formation and intestinal colonization by the Escherichia coli commensal strain Nissle 1917. Appl Environ Microbiol. 2009; 75: 246-51.
-
(2009)
Appl Environ Microbiol
, vol.75
, pp. 246-251
-
-
Lasaro, M.A.1
Salinger, N.2
Zhang, J.3
Wang, Y.4
Zhong, Z.5
Goulian, M.6
-
24
-
-
79953733693
-
Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease
-
Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011; 472: 57-63.
-
(2011)
Nature
, vol.472
, pp. 57-63
-
-
Wang, Z.1
Klipfell, E.2
Bennett, B.J.3
Koeth, R.4
Levison, B.S.5
Dugar, B.6
-
25
-
-
85014462837
-
Oral delivery of tumor microparticle vaccines activates NOD2 signaling pathway in ileac epithelium rendering potent antitumor T cell immunity
-
Dong W, Zhang H, Yin X, Liu Y, Chen D, Liang X, et al. Oral delivery of tumor microparticle vaccines activates NOD2 signaling pathway in ileac epithelium rendering potent antitumor T cell immunity. Oncoimmunology. 2017; 6: e1282589.
-
(2017)
Oncoimmunology
, vol.6
-
-
Dong, W.1
Zhang, H.2
Yin, X.3
Liu, Y.4
Chen, D.5
Liang, X.6
-
26
-
-
84939960795
-
Anti-tumor activity of the TGF-beta receptor kinase inhibitor galunisertib (LY2157299 monohydrate) in patient-derived tumor xenografts
-
Maier A, Peille AL, Vuaroqueaux V, Lahn M. Anti-tumor activity of the TGF-beta receptor kinase inhibitor galunisertib (LY2157299 monohydrate) in patient-derived tumor xenografts. Cell Oncol (Dordr). 2015; 38: 131-44.
-
(2015)
Cell Oncol (Dordr)
, vol.38
, pp. 131-144
-
-
Maier, A.1
Peille, A.L.2
Vuaroqueaux, V.3
Lahn, M.4
-
27
-
-
0034785348
-
TGF-beta signaling in tumor suppression and cancer progression
-
Derynck R, Akhurst RJ, Balmain A. TGF-beta signaling in tumor suppression and cancer progression. Nat Genet. 2001; 29: 117-29.
-
(2001)
Nat Genet
, vol.29
, pp. 117-129
-
-
Derynck, R.1
Akhurst, R.J.2
Balmain, A.3
-
28
-
-
84939783826
-
Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta signaling pathway
-
Herbertz S, Sawyer JS, Stauber AJ, Gueorguieva I, Driscoll KE, Estrem ST, et al. Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta signaling pathway. Drug Des Devel Ther. 2015; 9: 4479-99.
-
(2015)
Drug Des Devel Ther
, vol.9
, pp. 4479-4499
-
-
Herbertz, S.1
Sawyer, J.S.2
Stauber, A.J.3
Gueorguieva, I.4
Driscoll, K.E.5
Estrem, S.T.6
-
29
-
-
84866743713
-
Combination delivery of TGF-beta inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy
-
Park J, Wrzesinski SH, Stern E, Look M, Criscione J, Ragheb R, et al. Combination delivery of TGF-beta inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. Nat Mater. 2012; 11: 895-905.
-
(2012)
Nat Mater
, vol.11
, pp. 895-905
-
-
Park, J.1
Wrzesinski, S.H.2
Stern, E.3
Look, M.4
Criscione, J.5
Ragheb, R.6
-
30
-
-
84887444879
-
Microenvironmental regulation of tumor progression and metastasis
-
Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013; 19: 1423-37.
-
(2013)
Nat Med
, vol.19
, pp. 1423-1437
-
-
Quail, D.F.1
Joyce, J.A.2
-
31
-
-
84905381214
-
The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis
-
McAllister SS, Weinberg RA. The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat Cell Biol. 2014; 16: 717-27.
-
(2014)
Nat Cell Biol
, vol.16
, pp. 717-727
-
-
McAllister, S.S.1
Weinberg, R.A.2
-
32
-
-
30144443269
-
Paradoxical roles of the immune system during cancer development
-
de Visser KE, Eichten A, Coussens LM. Paradoxical roles of the immune system during cancer development. Nat Rev Cancer. 2006; 6: 24-37.
-
(2006)
Nat Rev Cancer
, vol.6
, pp. 24-37
-
-
De Visser, K.E.1
Eichten, A.2
Coussens, L.M.3
-
33
-
-
53549102755
-
The tumor microenvironment and its role in promoting tumor growth
-
Whiteside TL. The tumor microenvironment and its role in promoting tumor growth. Oncogene. 2008; 27: 5904-12.
-
(2008)
Oncogene
, vol.27
, pp. 5904-5912
-
-
Whiteside, T.L.1
-
34
-
-
85061997477
-
Gut microbiota and cancer: From pathogenesis to therapy
-
Vivarelli S, Salemi R, Candido S, Falzone L, Santagati M. Gut Microbiota and Cancer: From Pathogenesis to Therapy. Cancers (Basel). 2019; 11(1).
-
(2019)
Cancers (Basel)
, vol.11
, Issue.1
-
-
Vivarelli, S.1
Salemi, R.2
Candido, S.3
Falzone, L.4
Santagati, M.5
-
35
-
-
85013653301
-
Carcinogenesis and therapeutics: The microbiota perspective
-
Tsilimigras MC, Fodor A, Jobin C. Carcinogenesis and therapeutics: the microbiota perspective. Nat Microbiol. 2017; 2: 17008.
-
(2017)
Nat Microbiol
, vol.2
, pp. 17008
-
-
Tsilimigras, M.C.1
Fodor, A.2
Jobin, C.3
-
36
-
-
84888059687
-
The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide
-
Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillere R, Hannani D, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 2013; 342: 971-6.
-
(2013)
Science
, vol.342
, pp. 971-976
-
-
Viaud, S.1
Saccheri, F.2
Mignot, G.3
Yamazaki, T.4
Daillere, R.5
Hannani, D.6
-
37
-
-
84948451779
-
Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy
-
Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015; 350: 1084-9.
-
(2015)
Science
, vol.350
, pp. 1084-1089
-
-
Sivan, A.1
Corrales, L.2
Hubert, N.3
Williams, J.B.4
Aquino-Michaels, K.5
Earley, Z.M.6
-
38
-
-
85066394897
-
The intimate relationship between gut microbiota and cancer immunotherapy
-
Elkrief A, Derosa L, Zitvogel L, Kroemer G. The intimate relationship between gut microbiota and cancer immunotherapy. Gut Microbes. 2018: 1-5.
-
(2018)
Gut Microbes
, pp. 1-5
-
-
Elkrief, A.1
Derosa, L.2
Zitvogel, L.3
Kroemer, G.4
-
39
-
-
77950486499
-
Probiotic Escherichia coli strain Nissle 1917 outcompetes intestinal pathogens during biofilm formation
-
Hancock V, Dahl M, Klemm P. Probiotic Escherichia coli strain Nissle 1917 outcompetes intestinal pathogens during biofilm formation. J Med Microbiol. 2010; 59: 392-9.
-
(2010)
J Med Microbiol
, vol.59
, pp. 392-399
-
-
Hancock, V.1
Dahl, M.2
Klemm, P.3
-
40
-
-
84888049920
-
Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment
-
Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 2013; 342: 967-70.
-
(2013)
Science
, vol.342
, pp. 967-970
-
-
Iida, N.1
Dzutsev, A.2
Stewart, C.A.3
Smith, L.4
Bouladoux, N.5
Weingarten, R.A.6
-
41
-
-
85020416121
-
Microbe profile: Akkermansia muciniphila: A conserved intestinal symbiont that acts as the gatekeeper of our mucosa
-
de Vos WM. Microbe Profile: Akkermansia muciniphila: a conserved intestinal symbiont that acts as the gatekeeper of our mucosa. Microbiology. 2017; 163: 646-8.
-
(2017)
Microbiology
, vol.163
, pp. 646-648
-
-
De Vos, W.M.1
-
42
-
-
85021170776
-
Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab
-
Chaput N, Lepage P, Coutzac C, Soularue E, Le Roux K, Monot C, et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann Oncol. 2017; 28: 1368-79
-
(2017)
Ann Oncol
, vol.28
, pp. 1368-1379
-
-
Chaput, N.1
Lepage, P.2
Coutzac, C.3
Soularue, E.4
Le Roux, K.5
Monot, C.6
-
43
-
-
85051624449
-
Aspects of gut microbiota and immune system interactions in infectious diseases, immunopathology, and cancer
-
Lazar V, Ditu LM, Pircalabioru GG, Gheorghe I, Curutiu C, Holban AM, et al. Aspects of Gut Microbiota and Immune System Interactions in Infectious Diseases, Immunopathology, and Cancer. Front Immunol. 2018; 9: 1830.
-
(2018)
Front Immunol
, vol.9
, pp. 1830
-
-
Lazar, V.1
Ditu, L.M.2
Pircalabioru, G.G.3
Gheorghe, I.4
Curutiu, C.5
Holban, A.M.6
-
44
-
-
85028944723
-
Lactobacillus rhamnosus GG: An overview to explore the rationale of its use in cancer
-
Banna GL, Torino F, Marletta F, Santagati M, Salemi R, Cannarozzo E, et al. Lactobacillus rhamnosus GG: An Overview to Explore the Rationale of Its Use in Cancer. Front Pharmacol. 2017; 8: 603.
-
(2017)
Front Pharmacol
, vol.8
, pp. 603
-
-
Banna, G.L.1
Torino, F.2
Marletta, F.3
Santagati, M.4
Salemi, R.5
Cannarozzo, E.6
-
45
-
-
84982851793
-
Lactobacillus rhamnosus GG Activation of Dendritic Cells and Neutrophils Depends on the Dose and Time of Exposure
-
Cai S, Kandasamy M. Lactobacillus rhamnosus GG Activation of Dendritic Cells and Neutrophils Depends on the Dose and Time of Exposure. J Immunol Res. 2016; 2016: 7402760.
-
(2016)
J Immunol Res
, vol.2016
, pp. 7402760
-
-
Cai, S.1
Kandasamy, M.2
|