메뉴 건너뛰기




Volumn 69, Issue 9, 2018, Pages 2189-2204

From carotenoids to strigolactones

Author keywords

Carlactone; Carotenoid cleavage dioxygenase; Carotenoids; CCD7; CCD8; DWARF27; MAX1; Strigolactone biosynthesis

Indexed keywords

CAROTENOID; LACTONE; PHYTOHORMONE;

EID: 85064389803     PISSN: 00220957     EISSN: 14602431     Source Type: Journal    
DOI: 10.1093/jxb/erx476     Document Type: Review
Times cited : (181)

References (148)
  • 1
    • 84919363337 scopus 로고    scopus 로고
    • Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro
    • Abe S, Sado A, Tanaka K, et al. 2014. Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro. Proceedings of the National Academy of Sciences, USA 111, 18084-18089.
    • (2014) Proceedings of the National Academy of Sciences, USA , vol.111 , pp. 18084-18089
    • Abe, S.1    Sado, A.2    Tanaka, K.3
  • 3
    • 20444471142 scopus 로고    scopus 로고
    • Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi
    • Akiyama K, Matsuzaki K, Hayashi H. 2005. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435, 824-827.
    • (2005) Nature , vol.435 , pp. 824-827
    • Akiyama, K.1    Matsuzaki, K.2    Hayashi, H.3
  • 5
    • 58149293387 scopus 로고    scopus 로고
    • Carotenoid oxygenases involved in plant branching catalyse a highly specific conserved apocarotenoid cleavage reaction
    • Alder A, Holdermann I, Beyer P, Al-Babili S. 2008. Carotenoid oxygenases involved in plant branching catalyse a highly specific conserved apocarotenoid cleavage reaction. The Biochemical Journal 416, 289-296.
    • (2008) The Biochemical Journal , vol.416 , pp. 289-296
    • Alder, A.1    Holdermann, I.2    Beyer, P.3    Al-Babili, S.4
  • 11
    • 84905027354 scopus 로고    scopus 로고
    • An uncharacterized apocarotenoid-derived signal generated in ζ-carotene desaturase mutants regulates leaf development and the expression of chloroplast and nuclear genes in Arabidopsis
    • Avendaño-Vázquez AO, Cordoba E, Llamas E, et al. 2014. An uncharacterized apocarotenoid-derived signal generated in ζ-carotene desaturase mutants regulates leaf development and the expression of chloroplast and nuclear genes in Arabidopsis. The Plant Cell 26, 2524-2537.
    • (2014) The Plant Cell , vol.26 , pp. 2524-2537
    • Avendaño-Vázquez, A.O.1    Cordoba, E.2    Llamas, E.3
  • 12
  • 13
    • 84924071707 scopus 로고    scopus 로고
    • Arbuscular mycorrhizal dialogues: Do you speak 'plantish' or 'fungish'?
    • Bonfante P, Genre A. 2015. Arbuscular mycorrhizal dialogues: do you speak 'plantish' or 'fungish'? Trends in Plant Science 20, 150-154.
    • (2015) Trends in Plant Science , vol.20 , pp. 150-154
    • Bonfante, P.1    Genre, A.2
  • 14
    • 84878363786 scopus 로고    scopus 로고
    • Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula
    • Bonneau L, Huguet S, Wipf D, Pauly N, Truong HN. 2013. Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula. New Phytologist 199, 188-202.
    • (2013) New Phytologist , vol.199 , pp. 188-202
    • Bonneau, L.1    Huguet, S.2    Wipf, D.3    Pauly, N.4    Truong, H.N.5
  • 15
    • 3342920134 scopus 로고    scopus 로고
    • MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule
    • Booker J, Auldridge M, Wills S, McCarty D, Klee H, Leyser O. 2004. MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Current Biology 14, 1232-1238.
    • (2004) Current Biology , vol.14 , pp. 1232-1238
    • Booker, J.1    Auldridge, M.2    Wills, S.3    McCarty, D.4    Klee, H.5    Leyser, O.6
  • 17
    • 78650110710 scopus 로고    scopus 로고
    • Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning
    • Breuillin F, Schramm J, Hajirezaei M, et al. 2010. Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. The Plant Journal 64, 1002-1017.
    • (2010) The Plant Journal , vol.64 , pp. 1002-1017
    • Breuillin, F.1    Schramm, J.2    Hajirezaei, M.3
  • 18
    • 84875753226 scopus 로고    scopus 로고
    • Diverse roles of strigolactones in plant development
    • Brewer PB, Koltai H, Beveridge CA. 2013. Diverse roles of strigolactones in plant development. Molecular Plant 6, 18-28.
    • (2013) Molecular Plant , vol.6 , pp. 18-28
    • Brewer, P.B.1    Koltai, H.2    Beveridge, C.A.3
  • 19
    • 84971556336 scopus 로고    scopus 로고
    • LATERAL BRANCHING OXIDOREDUCTASE acts in the final stages of strigolactone biosynthesis in Arabidopsis
    • Brewer PB, Yoneyama K, Filardo F, et al. 2016. LATERAL BRANCHING OXIDOREDUCTASE acts in the final stages of strigolactone biosynthesis in Arabidopsis. Proceedings of the National Academy of Sciences, USA 113, 6301-6306.
    • (2016) Proceedings of the National Academy of Sciences, USA , vol.113 , pp. 6301-6306
    • Brewer, P.B.1    Yoneyama, K.2    Filardo, F.3
  • 20
    • 0029598850 scopus 로고
    • Structure and properties of carotenoids in relation to function
    • Britton G. 1995. Structure and properties of carotenoids in relation to function. FASEB Journal 9, 1551-1558.
    • (1995) FASEB Journal , vol.9 , pp. 1551-1558
    • Britton, G.1
  • 22
    • 84960097079 scopus 로고    scopus 로고
    • On the substrate specificity of the rice strigolactone biosynthesis enzyme DWARF27
    • Bruno M, Al-Babili S. 2016. On the substrate specificity of the rice strigolactone biosynthesis enzyme DWARF27. Planta 243, 1429-1440.
    • (2016) Planta , vol.243 , pp. 1429-1440
    • Bruno, M.1    Al-Babili, S.2
  • 23
    • 84932094479 scopus 로고    scopus 로고
    • The potato carotenoid cleavage dioxygenase 4 catalyzes a single cleavage of β-ionone ring-containing carotenes and non-epoxidated xanthophylls
    • Bruno M, Beyer P, Al-Babili S. 2015. The potato carotenoid cleavage dioxygenase 4 catalyzes a single cleavage of β-ionone ring-containing carotenes and non-epoxidated xanthophylls. Archives of Biochemistry and Biophysics 572, 126-133.
    • (2015) Archives of Biochemistry and Biophysics , vol.572 , pp. 126-133
    • Bruno, M.1    Beyer, P.2    Al-Babili, S.3
  • 24
    • 84899648043 scopus 로고    scopus 로고
    • On the substrate- and stereospecificity of the plant carotenoid cleavage dioxygenase 7
    • Bruno M, Hofmann M, Vermathen M, Alder A, Beyer P, Al-Babili S. 2014. On the substrate- and stereospecificity of the plant carotenoid cleavage dioxygenase 7. FEBS Letters 588, 1802-1807.
    • (2014) FEBS Letters , vol.588 , pp. 1802-1807
    • Bruno, M.1    Hofmann, M.2    Vermathen, M.3    Alder, A.4    Beyer, P.5    Al-Babili, S.6
  • 27
    • 84891764933 scopus 로고    scopus 로고
    • Regulation of drought tolerance by the F-box protein MAX2 in Arabidopsis
    • Bu Q, Lv T, Shen H, et al. 2014. Regulation of drought tolerance by the F-box protein MAX2 in Arabidopsis. Plant Physiology 164, 424-439.
    • (2014) Plant Physiology , vol.164 , pp. 424-439
    • Bu, Q.1    Lv, T.2    Shen, H.3
  • 28
    • 0000333692 scopus 로고
    • Chemical communication between the parasitic weed striga and its crop host
    • Butler LG. 1994. Chemical communication between the parasitic weed striga and its crop host. ACS Symposium Series 582, 158-168.
    • (1994) ACS Symposium Series , vol.582 , pp. 158-168
    • Butler, L.G.1
  • 30
    • 0000502250 scopus 로고
    • Germination of witchweed (Striga lutea Lour.): Isolation and properties of a potent stimulant
    • Cook CE, Whichard LP, Turner B, Wall ME, Egley GH. 1966. Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154, 1189-1190.
    • (1966) Science , vol.154 , pp. 1189-1190
    • Cook, C.E.1    Whichard, L.P.2    Turner, B.3    Wall, M.E.4    Egley, G.H.5
  • 33
    • 84980328109 scopus 로고    scopus 로고
    • An histidine covalent receptor and butenolide complex mediates strigolactone perception
    • de Saint Germain A, Clavé G, Badet-Denisot MA, et al. 2016. An histidine covalent receptor and butenolide complex mediates strigolactone perception. Nature Chemical Biology 12, 787-794.
    • (2016) Nature Chemical Biology , vol.12 , pp. 787-794
    • De Saint Germain, A.1    Clavé, G.2    Badet-Denisot, M.A.3
  • 34
    • 85014476210 scopus 로고    scopus 로고
    • Strigolactone biosynthesis is evolutionarily conserved, regulated by phosphate starvation and contributes to resistance against phytopathogenic fungi in a moss, Physcomitrella patens
    • Decker EL, Alder A, Hunn S, et al. 2017. Strigolactone biosynthesis is evolutionarily conserved, regulated by phosphate starvation and contributes to resistance against phytopathogenic fungi in a moss, Physcomitrella patens. New Phytologist 216, 455-468.
    • (2017) New Phytologist , vol.216 , pp. 455-468
    • Decker, E.L.1    Alder, A.2    Hunn, S.3
  • 35
    • 33745946053 scopus 로고    scopus 로고
    • Vitamin synthesis in plants: Tocopherols and carotenoids
    • DellaPenna D, Pogson BJ. 2006. Vitamin synthesis in plants: tocopherols and carotenoids. Annual Review of Plant Biology 57, 711-738.
    • (2006) Annual Review of Plant Biology , vol.57 , pp. 711-738
    • DellaPenna, D.1    Pogson, B.J.2
  • 39
    • 84964285768 scopus 로고    scopus 로고
    • Stereospecificity in strigolactone biosynthesis and perception
    • Flematti GR, Scaffidi A, Waters MT, Smith SM. 2016. Stereospecificity in strigolactone biosynthesis and perception. Planta 243, 1361-1373.
    • (2016) Planta , vol.243 , pp. 1361-1373
    • Flematti, G.R.1    Scaffidi, A.2    Waters, M.T.3    Smith, S.M.4
  • 40
    • 57749117122 scopus 로고    scopus 로고
    • RNA interference-mediated repression of MtCCD1 in mycorrhizal roots of Medicago truncatula causes accumulation of C27 apocarotenoids, shedding light on the functional role of CCD1
    • Floss DS, Schliemann W, Schmidt J, Strack D, Walter MH. 2008. RNA interference-mediated repression of MtCCD1 in mycorrhizal roots of Medicago truncatula causes accumulation of C27 apocarotenoids, shedding light on the functional role of CCD1. Plant Physiology 148, 1267-1282.
    • (2008) Plant Physiology , vol.148 , pp. 1267-1282
    • Floss, D.S.1    Schliemann, W.2    Schmidt, J.3    Strack, D.4    Walter, M.H.5
  • 41
    • 22144451216 scopus 로고    scopus 로고
    • The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea
    • Foo E, Bullier E, Goussot M, Foucher F, Rameau C, Beveridge CA. 2005. The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea. The Plant Cell 17, 464-474.
    • (2005) The Plant Cell , vol.17 , pp. 464-474
    • Foo, E.1    Bullier, E.2    Goussot, M.3    Foucher, F.4    Rameau, C.5    Beveridge, C.A.6
  • 42
    • 1542315589 scopus 로고    scopus 로고
    • The biosynthesis and nutritional uses of carotenoids
    • Fraser PD, Bramley PM. 2004. The biosynthesis and nutritional uses of carotenoids. Progress in Lipid Research 43, 228-265.
    • (2004) Progress in Lipid Research , vol.43 , pp. 228-265
    • Fraser, P.D.1    Bramley, P.M.2
  • 45
    • 51649096075 scopus 로고    scopus 로고
    • Strigolactone inhibition of shoot branching
    • Gomez-Roldan V, Fermas S, Brewer PB, et al. 2008. Strigolactone inhibition of shoot branching. Nature 455, 189-194.
    • (2008) Nature , vol.455 , pp. 189-194
    • Gomez-Roldan, V.1    Fermas, S.2    Brewer, P.B.3
  • 46
    • 84893145211 scopus 로고    scopus 로고
    • Carotenoid cleavage dioxygenase4 is a negative regulator of β-carotene content in Arabidopsis seeds
    • Gonzalez-Jorge S, Ha SH, Magallanes-Lundback M, et al. 2013. Carotenoid cleavage dioxygenase4 is a negative regulator of β-carotene content in Arabidopsis seeds. The Plant Cell 25, 4812-4826.
    • (2013) The Plant Cell , vol.25 , pp. 4812-4826
    • Gonzalez-Jorge, S.1    Ha, S.H.2    Magallanes-Lundback, M.3
  • 47
    • 0002693883 scopus 로고
    • Distribution and analysis of carotenoids
    • Goodwin TW, ed. London: Academic Press
    • Goodwin TW, Britton G. 1988. Distribution and analysis of carotenoids. In: Goodwin TW, ed. Plant pigments. London: Academic Press, 61-132.
    • (1988) Plant Pigments , pp. 61-132
    • Goodwin, T.W.1    Britton, G.2
  • 48
  • 49
    • 84901008603 scopus 로고    scopus 로고
    • Phytohormone signaling in arbuscular mycorhiza development
    • Gutjahr C. 2014. Phytohormone signaling in arbuscular mycorhiza development. Current Opinion in Plant Biology 20, 26-34.
    • (2014) Current Opinion in Plant Biology , vol.20 , pp. 26-34
    • Gutjahr, C.1
  • 52
    • 84944276257 scopus 로고    scopus 로고
    • Biochemical characterization and selective inhibition of β-carotene cis-trans isomerase D27 and carotenoid cleavage dioxygenase CCD8 on the strigolactone biosynthetic pathway
    • Harrison PJ, Newgas SA, Descombes F, Shepherd SA, Thompson AJ, Bugg TD. 2015. Biochemical characterization and selective inhibition of β-carotene cis-trans isomerase D27 and carotenoid cleavage dioxygenase CCD8 on the strigolactone biosynthetic pathway. The FEBS Journal 282, 3986-4000.
    • (2015) The FEBS Journal , vol.282 , pp. 3986-4000
    • Harrison, P.J.1    Newgas, S.A.2    Descombes, F.3    Shepherd, S.A.4    Thompson, A.J.5    Bugg, T.D.6
  • 54
    • 70349223008 scopus 로고    scopus 로고
    • Interactions between auxin and strigolactone in shoot branching control
    • Hayward A, Stirnberg P, Beveridge C, Leyser O. 2009. Interactions between auxin and strigolactone in shoot branching control. Plant Physiology 151, 400-412.
    • (2009) Plant Physiology , vol.151 , pp. 400-412
    • Hayward, A.1    Stirnberg, P.2    Beveridge, C.3    Leyser, O.4
  • 55
    • 84860817547 scopus 로고    scopus 로고
    • Gibberellin biosynthesis and its regulation
    • Hedden P, Thomas SG. 2012. Gibberellin biosynthesis and its regulation. The Biochemical Journal 444, 11-25.
    • (2012) The Biochemical Journal , vol.444 , pp. 11-25
    • Hedden, P.1    Thomas, S.G.2
  • 56
    • 33645028924 scopus 로고    scopus 로고
    • Carotenoid accumulation and function in seeds and non-green tissues
    • Howitt CA, Pogson BJ. 2006. Carotenoid accumulation and function in seeds and non-green tissues. Plant, Cell & Environment 29, 435-445.
    • (2006) Plant, Cell & Environment , vol.29 , pp. 435-445
    • Howitt, C.A.1    Pogson, B.J.2
  • 57
    • 58449120818 scopus 로고    scopus 로고
    • Characterization of the rice carotenoid cleavage dioxygenase 1 reveals a novel route for geranial biosynthesis
    • Ilg A, Beyer P, Al-Babili S. 2009. Characterization of the rice carotenoid cleavage dioxygenase 1 reveals a novel route for geranial biosynthesis. The FEBS Journal 276, 736-747.
    • (2009) The FEBS Journal , vol.276 , pp. 736-747
    • Ilg, A.1    Beyer, P.2    Al-Babili, S.3
  • 58
    • 84904102827 scopus 로고    scopus 로고
    • Tomato carotenoid cleavage dioxygenases 1A and 1B: Relaxed double bond specificity leads to a plenitude of dialdehydes, mono-apocarotenoids and isoprenoid volatiles
    • Ilg A, Bruno M, Beyer P, Al-Babili S. 2014. Tomato carotenoid cleavage dioxygenases 1A and 1B: relaxed double bond specificity leads to a plenitude of dialdehydes, mono-apocarotenoids and isoprenoid volatiles. FEBS Open Bio 4, 584-593.
    • (2014) FEBS Open Bio , vol.4 , pp. 584-593
    • Ilg, A.1    Bruno, M.2    Beyer, P.3    Al-Babili, S.4
  • 59
    • 14844355911 scopus 로고    scopus 로고
    • Analysis in vitro of the enzyme CRTISO establishes a poly-cis-carotenoid biosynthesis pathway in plants
    • Isaacson T, Ohad I, Beyer P, Hirschberg J. 2004. Analysis in vitro of the enzyme CRTISO establishes a poly-cis-carotenoid biosynthesis pathway in plants. Plant Physiology 136, 4246-4255.
    • (2004) Plant Physiology , vol.136 , pp. 4246-4255
    • Isaacson, T.1    Ohad, I.2    Beyer, P.3    Hirschberg, J.4
  • 61
    • 85020477144 scopus 로고    scopus 로고
    • Regulation of strigolactone biosynthesis by gibberellin signaling
    • Ito S, Yamagami D, Umehara M, et al. 2017. Regulation of strigolactone biosynthesis by gibberellin signaling. Plant Physiology 174, 1250-1259.
    • (2017) Plant Physiology , vol.174 , pp. 1250-1259
    • Ito, S.1    Yamagami, D.2    Umehara, M.3
  • 62
    • 79960040444 scopus 로고    scopus 로고
    • Quantification of the relationship between strigolactones and Striga hermonthica infection in rice under varying levels of nitrogen and phosphorus
    • Jamil M, Charnikhova T, Cardoso C, Jamil T, Ueno K, Verstappen F, Asami T, Bouwmeester H. 2011. Quantification of the relationship between strigolactones and Striga hermonthica infection in rice under varying levels of nitrogen and phosphorus. Weed Research 51, 373-385.
    • (2011) Weed Research , vol.51 , pp. 373-385
    • Jamil, M.1    Charnikhova, T.2    Cardoso, C.3    Jamil, T.4    Ueno, K.5    Verstappen, F.6    Asami, T.7    Bouwmeester, H.8
  • 63
    • 84857626010 scopus 로고    scopus 로고
    • Genetic variation in strigolactone production and tillering in rice and its effect on Striga hermonthica infection
    • Jamil M, Charnikhova T, Houshyani B, van Ast A, Bouwmeester HJ. 2012. Genetic variation in strigolactone production and tillering in rice and its effect on Striga hermonthica infection. Planta 235, 473-484.
    • (2012) Planta , vol.235 , pp. 473-484
    • Jamil, M.1    Charnikhova, T.2    Houshyani, B.3    Van Ast, A.4    Bouwmeester, H.J.5
  • 64
    • 84890449326 scopus 로고    scopus 로고
    • DWARF 53 acts as a repressor of strigolactone signalling in rice
    • Jiang L, Liu X, Xiong G, et al. 2013. DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature 504, 401-405.
    • (2013) Nature , vol.504 , pp. 401-405
    • Jiang, L.1    Liu, X.2    Xiong, G.3
  • 65
    • 33751071837 scopus 로고    scopus 로고
    • Branching genes are conserved across species. Genes controlling a novel signal in pea are coregulated by other longdistance signals
    • Johnson X, Brcich T, Dun EA, Goussot M, Haurogné K, Beveridge CA, Rameau C. 2006. Branching genes are conserved across species. Genes controlling a novel signal in pea are coregulated by other longdistance signals. Plant Physiology 142, 1014-1026.
    • (2006) Plant Physiology , vol.142 , pp. 1014-1026
    • Johnson, X.1    Brcich, T.2    Dun, E.A.3    Goussot, M.4    Haurogné, K.5    Beveridge, C.A.6    Rameau, C.7
  • 66
    • 84974720040 scopus 로고    scopus 로고
    • Strigolactones, super hormones in the fight against Striga
    • Khosla A, Nelson DC. 2016. Strigolactones, super hormones in the fight against Striga. Current Opinion in Plant Biology 33, 57-63.
    • (2016) Current Opinion in Plant Biology , vol.33 , pp. 57-63
    • Khosla, A.1    Nelson, D.C.2
  • 68
  • 69
    • 79954596954 scopus 로고    scopus 로고
    • Strigolactones are regulators of root development
    • Koltai H. 2011. Strigolactones are regulators of root development. New Phytologist 190, 545-549.
    • (2011) New Phytologist , vol.190 , pp. 545-549
    • Koltai, H.1
  • 73
    • 67651115565 scopus 로고    scopus 로고
    • DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth
    • Lin H, Wang R, Qian Q, et al. 2009. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. The Plant Cell 21, 1512-1525.
    • (2009) The Plant Cell , vol.21 , pp. 1512-1525
    • Lin, H.1    Wang, R.2    Qian, Q.3
  • 74
    • 84939993452 scopus 로고    scopus 로고
    • Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: Exploring the interaction between strigolactones and ABA under abiotic stress
    • Liu J, He H, Vitali M, et al. 2015. Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: exploring the interaction between strigolactones and ABA under abiotic stress. Planta 241, 1435-1451.
    • (2015) Planta , vol.241 , pp. 1435-1451
    • Liu, J.1    He, H.2    Vitali, M.3
  • 75
    • 82755166960 scopus 로고    scopus 로고
    • Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2
    • Liu W, Kohlen W, Lillo A, et al. 2011. Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. The Plant Cell 23, 3853-3865.
    • (2011) The Plant Cell , vol.23 , pp. 3853-3865
    • Liu, W.1    Kohlen, W.2    Lillo, A.3
  • 76
    • 84948960628 scopus 로고    scopus 로고
    • How drought and salinity affect arbuscular mycorrhizal symbiosis and strigolactone biosynthesis?
    • López-Ráez JA. 2016. How drought and salinity affect arbuscular mycorrhizal symbiosis and strigolactone biosynthesis? Planta 243, 1375-1385.
    • (2016) Planta , vol.243 , pp. 1375-1385
    • López-Ráez, J.A.1
  • 77
    • 77954159125 scopus 로고    scopus 로고
    • Does abscisic acid affect strigolactone biosynthesis?
    • López-Ráez JA, Kohlen W, Charnikhova T, et al. 2010. Does abscisic acid affect strigolactone biosynthesis? New Phytologist 187, 343-354.
    • (2010) New Phytologist , vol.187 , pp. 343-354
    • López-Ráez, J.A.1    Kohlen, W.2    Charnikhova, T.3
  • 79
    • 84885217906 scopus 로고    scopus 로고
    • Enzymatic formation of β-citraurin from β-cryptoxanthin and Zeaxanthin by carotenoid cleavage dioxygenase4 in the flavedo of citrus fruit
    • Ma G, Zhang L, Matsuta A, Matsutani K, Yamawaki K, Yahata M, Wahyudi A, Motohashi R, Kato M. 2013. Enzymatic formation of β-citraurin from β-cryptoxanthin and Zeaxanthin by carotenoid cleavage dioxygenase4 in the flavedo of citrus fruit. Plant Physiology 163, 682-695.
    • (2013) Plant Physiology , vol.163 , pp. 682-695
    • Ma, G.1    Zhang, L.2    Matsuta, A.3    Matsutani, K.4    Yamawaki, K.5    Yahata, M.6    Wahyudi, A.7    Motohashi, R.8    Kato, M.9
  • 80
    • 85028717519 scopus 로고    scopus 로고
    • A D53 repression motif induces oligomerization of TOPLESS corepressors and promotes assembly of a corepressor-nucleosome complex
    • Ma H, Duan J, Ke J, et al. 2017. A D53 repression motif induces oligomerization of TOPLESS corepressors and promotes assembly of a corepressor-nucleosome complex. Science Advances 3, e1601217.
    • (2017) Science Advances , vol.3 , pp. e1601217
    • Ma, H.1    Duan, J.2    Ke, J.3
  • 81
    • 68149148642 scopus 로고    scopus 로고
    • Carotenoid crystal formation in Arabidopsis and carrot roots caused by increased phytoene synthase protein levels
    • Maass D, Arango J, Wüst F, Beyer P, Welsch R. 2009. Carotenoid crystal formation in Arabidopsis and carrot roots caused by increased phytoene synthase protein levels. PLoS One 4, e6373.
    • (2009) PLoS One , vol.4 , pp. e6373
    • Maass, D.1    Arango, J.2    Wüst, F.3    Beyer, P.4    Welsch, R.5
  • 83
    • 33644647072 scopus 로고    scopus 로고
    • The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway
    • Matusova R, Rani K, Verstappen FW, Franssen MC, Beale MH, Bouwmeester HJ. 2005. The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiology 139, 920-934.
    • (2005) Plant Physiology , vol.139 , pp. 920-934
    • Matusova, R.1    Rani, K.2    Verstappen, F.W.3    Franssen, M.C.4    Beale, M.H.5    Bouwmeester, H.J.6
  • 84
    • 80053247681 scopus 로고    scopus 로고
    • Cleavage oxygenases for the biosynthesis of trisporoids and other apocarotenoids in Phycomyces
    • Medina HR, Cerdá-Olmedo E, Al-Babili S. 2011. Cleavage oxygenases for the biosynthesis of trisporoids and other apocarotenoids in Phycomyces. Molecular Microbiology 82, 199-208.
    • (2011) Molecular Microbiology , vol.82 , pp. 199-208
    • Medina, H.R.1    Cerdá-Olmedo, E.2    Al-Babili, S.3
  • 86
  • 87
    • 16344375416 scopus 로고    scopus 로고
    • Related enzymes solve evolutionarily recurrent problems in the metabolism of carotenoids
    • Moise AR, von Lintig J, Palczewski K. 2005. Related enzymes solve evolutionarily recurrent problems in the metabolism of carotenoids. Trends in Plant Science 10, 178-186.
    • (2005) Trends in Plant Science , vol.10 , pp. 178-186
    • Moise, A.R.1    Von Lintig, J.2    Palczewski, K.3
  • 88
    • 0034954756 scopus 로고    scopus 로고
    • Mutational analysis of branching in pea. Evidence that Rms1 and Rms5 regulate the same novel signal
    • Morris SE, Turnbull CG, Murfet IC, Beveridge CA. 2001. Mutational analysis of branching in pea. Evidence that Rms1 and Rms5 regulate the same novel signal. Plant Physiology 126, 1205-1213.
    • (2001) Plant Physiology , vol.126 , pp. 1205-1213
    • Morris, S.E.1    Turnbull, C.G.2    Murfet, I.C.3    Beveridge, C.A.4
  • 91
    • 84880258913 scopus 로고    scopus 로고
    • Responses of root architecture development to low phosphorus availability: A review
    • Niu YF, Chai RS, Jin GL, Wang H, Tang CX, Zhang YS. 2013. Responses of root architecture development to low phosphorus availability: a review. Annals of Botany 112, 391-408.
    • (2013) Annals of Botany , vol.112 , pp. 391-408
    • Niu, Y.F.1    Chai, R.S.2    Jin, G.L.3    Wang, H.4    Tang, C.X.5    Zhang, Y.S.6
  • 93
    • 33751117993 scopus 로고    scopus 로고
    • Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals
    • Ohmiya A, Kishimoto S, Aida R, Yoshioka S, Sumitomo K. 2006. Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiology 142, 1193-1201.
    • (2006) Plant Physiology , vol.142 , pp. 1193-1201
    • Ohmiya, A.1    Kishimoto, S.2    Aida, R.3    Yoshioka, S.4    Sumitomo, K.5
  • 94
    • 0036009771 scopus 로고    scopus 로고
    • Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis
    • Park H, Kreunen SS, Cuttriss AJ, DellaPenna D, Pogson BJ. 2002. Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis. The Plant Cell 14, 321-332.
    • (2002) The Plant Cell , vol.14 , pp. 321-332
    • Park, H.1    Kreunen, S.S.2    Cuttriss, A.J.3    DellaPenna, D.4    Pogson, B.J.5
  • 95
    • 65649145537 scopus 로고    scopus 로고
    • Observations on the current status of Orobanche and Striga problems worldwide
    • Parker C. 2009. Observations on the current status of Orobanche and Striga problems worldwide. Pest Management Science 65, 453-459.
    • (2009) Pest Management Science , vol.65 , pp. 453-459
    • Parker, C.1
  • 96
    • 79961020658 scopus 로고    scopus 로고
    • Root developmental adaptation to phosphate starvation: Better safe than sorry
    • Péret B, Clément M, Nussaume L, Desnos T. 2011. Root developmental adaptation to phosphate starvation: better safe than sorry. Trends in Plant Science 16, 442-450.
    • (2011) Trends in Plant Science , vol.16 , pp. 442-450
    • Péret, B.1    Clément, M.2    Nussaume, L.3    Desnos, T.4
  • 98
    • 84856745520 scopus 로고    scopus 로고
    • Retinoic acid signalling during development
    • Rhinn M, Dollé P. 2012. Retinoic acid signalling during development. Development 139, 843-858.
    • (2012) Development , vol.139 , pp. 843-858
    • Rhinn, M.1    Dollé, P.2
  • 100
    • 14544289081 scopus 로고    scopus 로고
    • Retinal biosynthesis in Eubacteria: In vitro characterization of a novel carotenoid oxygenase from Synechocystis sp. PCC 6803
    • Ruch S, Beyer P, Ernst H, Al-Babili S. 2005. Retinal biosynthesis in Eubacteria: in vitro characterization of a novel carotenoid oxygenase from Synechocystis sp. PCC 6803. Molecular Microbiology 55, 1015-1024.
    • (2005) Molecular Microbiology , vol.55 , pp. 1015-1024
    • Ruch, S.1    Beyer, P.2    Ernst, H.3    Al-Babili, S.4
  • 101
    • 84861554979 scopus 로고    scopus 로고
    • Carotenoid biosynthesis in Arabidopsis: A colorful pathway
    • Ruiz-Sola MÁ, Rodríguez-Concepción M. 2012. Carotenoid biosynthesis in Arabidopsis: a colorful pathway. The Arabidopsis Book 10, e0158.
    • (2012) The Arabidopsis Book , vol.10 , pp. e0158
    • Má, R.1    Rodríguez-Concepción, M.2
  • 103
    • 84966372548 scopus 로고    scopus 로고
    • Abscisic acid and abiotic stress tolerance in crop plants
    • Sah SK, Reddy KR, Li J. 2016. Abscisic acid and abiotic stress tolerance in crop plants. Frontiers in Plant Science 7, 571.
    • (2016) Frontiers in Plant Science , vol.7 , pp. 571
    • Sah, S.K.1    Reddy, K.R.2    Li, J.3
  • 104
    • 84903650267 scopus 로고    scopus 로고
    • Strigolactone hormones and their stereoisomers signal through two related receptor proteins to induce different physiological responses in Arabidopsis
    • Scaffidi A, Waters MT, Sun YK, Skelton BW, Dixon KW, Ghisalberti EL, Flematti GR, Smith SM. 2014. Strigolactone hormones and their stereoisomers signal through two related receptor proteins to induce different physiological responses in Arabidopsis. Plant Physiology 165, 1221-1232.
    • (2014) Plant Physiology , vol.165 , pp. 1221-1232
    • Scaffidi, A.1    Waters, M.T.2    Sun, Y.K.3    Skelton, B.W.4    Dixon, K.W.5    Ghisalberti, E.L.6    Flematti, G.R.7    Smith, S.M.8
  • 105
    • 49249124981 scopus 로고    scopus 로고
    • D'orenone blocks polarized tip growth of root hairs by interfering with the PIN2-mediated auxin transport network in the root apex
    • Schlicht M, Samajová O, Schachtschabel D, Mancuso S, Menzel D, Boland W, Baluska F. 2008. D'orenone blocks polarized tip growth of root hairs by interfering with the PIN2-mediated auxin transport network in the root apex. The Plant Journal 55, 709-717.
    • (2008) The Plant Journal , vol.55 , pp. 709-717
    • Schlicht, M.1    Samajová, O.2    Schachtschabel, D.3    Mancuso, S.4    Menzel, D.5    Boland, W.6    Baluska, F.7
  • 106
    • 8744286799 scopus 로고    scopus 로고
    • The biochemical characterization of two carotenoid cleavage enzymes from Arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching
    • Schwartz SH, Qin X, Loewen MC. 2004. The biochemical characterization of two carotenoid cleavage enzymes from Arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching. The Journal of Biological Chemistry 279, 46940-46945.
    • (2004) The Journal of Biological Chemistry , vol.279 , pp. 46940-46945
    • Schwartz, S.H.1    Qin, X.2    Loewen, M.C.3
  • 108
    • 85018777624 scopus 로고    scopus 로고
    • BRC1 expression regulates bud activation potential but is not necessary or sufficient for bud growth inhibition in Arabidopsis
    • Seale M, Bennett T, Leyser O. 2017. BRC1 expression regulates bud activation potential but is not necessary or sufficient for bud growth inhibition in Arabidopsis. Development 144, 1661-1673.
    • (2017) Development , vol.144 , pp. 1661-1673
    • Seale, M.1    Bennett, T.2    Leyser, O.3
  • 111
    • 34247218101 scopus 로고    scopus 로고
    • Analysis of the DECREASED APICAL DOMINANCE genes of petunia in the control of axillary branching
    • Simons JL, Napoli CA, Janssen BJ, Plummer KM, Snowden KC. 2007. Analysis of the DECREASED APICAL DOMINANCE genes of petunia in the control of axillary branching. Plant Physiology 143, 697-706.
    • (2007) Plant Physiology , vol.143 , pp. 697-706
    • Simons, J.L.1    Napoli, C.A.2    Janssen, B.J.3    Plummer, K.M.4    Snowden, K.C.5
  • 112
    • 84903626362 scopus 로고    scopus 로고
    • Signalling and responses to strigolactones and karrikins
    • Smith SM, Li J. 2014. Signalling and responses to strigolactones and karrikins. Current Opinion in Plant Biology 21, 23-29.
    • (2014) Current Opinion in Plant Biology , vol.21 , pp. 23-29
    • Smith, S.M.1    Li, J.2
  • 113
    • 18144377299 scopus 로고    scopus 로고
    • The Decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development
    • Snowden KC, Simkin AJ, Janssen BJ, Templeton KR, Loucas HM, Simons JL, Karunairetnam S, Gleave AP, Clark DG, Klee HJ. 2005. The Decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development. The Plant Cell 17, 746-759.
    • (2005) The Plant Cell , vol.17 , pp. 746-759
    • Snowden, K.C.1    Simkin, A.J.2    Janssen, B.J.3    Templeton, K.R.4    Loucas, H.M.5    Simons, J.L.6    Karunairetnam, S.7    Gleave, A.P.8    Clark, D.G.9    Klee, H.J.10
  • 114
    • 0038722744 scopus 로고    scopus 로고
    • MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea
    • Sorefan K, Booker J, Haurogné K, et al. 2003. MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes & Development 17, 1469-1474.
    • (2003) Genes & Development , vol.17 , pp. 1469-1474
    • Sorefan, K.1    Booker, J.2    Haurogné, K.3
  • 115
    • 84949668181 scopus 로고    scopus 로고
    • SMAX1-LIKE/D53 family members enable distinct MAX2-dependent responses to strigolactones and karrikins in Arabidopsis
    • Soundappan I, Bennett T, Morffy N, Liang Y, Stanga JP, Abbas A, Leyser O, Nelson DC. 2015. SMAX1-LIKE/D53 family members enable distinct MAX2-dependent responses to strigolactones and karrikins in Arabidopsis. The Plant Cell 27, 3143-3159.
    • (2015) The Plant Cell , vol.27 , pp. 3143-3159
    • Soundappan, I.1    Bennett, T.2    Morffy, N.3    Liang, Y.4    Stanga, J.P.5    Abbas, A.6    Leyser, O.7    Nelson, D.C.8
  • 116
    • 84883230977 scopus 로고    scopus 로고
    • SUPPRESSOR of MORE AXILLARY GROWTH2 1 controls seed germination and seedling development in Arabidopsis
    • Stanga JP, Smith SM, Briggs WR, Nelson DC. 2013. SUPPRESSOR OF MORE AXILLARY GROWTH2 1 controls seed germination and seedling development in Arabidopsis. Plant Physiology 163, 318-330.
    • (2013) Plant Physiology , vol.163 , pp. 318-330
    • Stanga, J.P.1    Smith, S.M.2    Briggs, W.R.3    Nelson, D.C.4
  • 117
    • 33947682757 scopus 로고    scopus 로고
    • MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching
    • Stirnberg P, Furner IJ, Ottoline Leyser HM. 2007. MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. The Plant Journal 50, 80-94.
    • (2007) The Plant Journal , vol.50 , pp. 80-94
    • Stirnberg, P.1    Furner, I.J.2    Ottoline Leyser, H.M.3
  • 118
    • 85064397023 scopus 로고    scopus 로고
    • Cis-trans isomerism in alkenes
    • 7th Edition. Boston: Brooks Cole
    • Stoker HS. 2015. Cis-trans isomerism in alkenes. In: General, organic and biological chemistry. 7th Edition. Boston: Brooks Cole, 390-393.
    • (2015) General, Organic and Biological Chemistry , pp. 390-393
    • Stoker, H.S.1
  • 120
    • 84987619532 scopus 로고    scopus 로고
    • Key residues for catalytic function and metal coordination in a carotenoid cleavage dioxygenase
    • Sui X, Zhang J, Golczak M, Palczewski K, Kiser PD. 2016. Key residues for catalytic function and metal coordination in a carotenoid cleavage dioxygenase. The Journal of Biological Chemistry 291, 19401-19412.
    • (2016) The Journal of Biological Chemistry , vol.291 , pp. 19401-19412
    • Sui, X.1    Zhang, J.2    Golczak, M.3    Palczewski, K.4    Kiser, P.D.5
  • 121
    • 84907776656 scopus 로고    scopus 로고
    • Strigolactones are involved in phosphate- and nitratedeficiency- induced root development and auxin transport in rice
    • Sun H, Tao J, Liu S, Huang S, Chen S, Xie X, Yoneyama K, Zhang Y, Xu G. 2014. Strigolactones are involved in phosphate- and nitratedeficiency- induced root development and auxin transport in rice. Journal of Experimental Botany 65, 6735-6746.
    • (2014) Journal of Experimental Botany , vol.65 , pp. 6735-6746
    • Sun, H.1    Tao, J.2    Liu, S.3    Huang, S.4    Chen, S.5    Xie, X.6    Yoneyama, K.7    Zhang, Y.8    Xu, G.9
  • 123
  • 124
    • 80053524310 scopus 로고    scopus 로고
    • Ent-2'-epi-Orobanchol and its acetate, as germination stimulants for Striga gesnerioides seeds isolated from cowpea and red clover
    • Ueno K, Nomura S, Muranaka S, Mizutani M, Takikawa H, Sugimoto Y. 2011. Ent-2'-epi-Orobanchol and its acetate, as germination stimulants for Striga gesnerioides seeds isolated from cowpea and red clover. Journal of Agricultural and Food Chemistry 59, 10485-10490.
    • (2011) Journal of Agricultural and Food Chemistry , vol.59 , pp. 10485-10490
    • Ueno, K.1    Nomura, S.2    Muranaka, S.3    Mizutani, M.4    Takikawa, H.5    Sugimoto, Y.6
  • 125
    • 51649112342 scopus 로고    scopus 로고
    • Inhibition of shoot branching by new terpenoid plant hormones
    • Umehara M, Hanada A, Yoshida S, et al. 2008. Inhibition of shoot branching by new terpenoid plant hormones. Nature 455, 195-200.
    • (2008) Nature , vol.455 , pp. 195-200
    • Umehara, M.1    Hanada, A.2    Yoshida, S.3
  • 128
    • 85014963225 scopus 로고    scopus 로고
    • Abscisic acid signaling and abiotic stress tolerance in plants: A review on current knowledge and future prospects
    • Vishwakarma K, Upadhyay N, Kumar N, et al. 2017. Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Frontiers in Plant Science 8, 161.
    • (2017) Frontiers in Plant Science , vol.8 , pp. 161
    • Vishwakarma, K.1    Upadhyay, N.2    Kumar, N.3
  • 129
    • 73849105212 scopus 로고    scopus 로고
    • SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato
    • Vogel JT, Walter MH, Giavalisco P, et al. 2010. SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato. The Plant Journal 61, 300-311.
    • (2010) The Plant Journal , vol.61 , pp. 300-311
    • Vogel, J.T.1    Walter, M.H.2    Giavalisco, P.3
  • 130
    • 84906065976 scopus 로고    scopus 로고
    • Strigolactones and the control of plant development: Lessons from shoot branching
    • Waldie T, McCulloch H, Leyser O. 2014. Strigolactones and the control of plant development: lessons from shoot branching. The Plant Journal 79, 607-622.
    • (2014) The Plant Journal , vol.79 , pp. 607-622
    • Waldie, T.1    McCulloch, H.2    Leyser, O.3
  • 131
    • 84886562095 scopus 로고    scopus 로고
    • Role of carotenoid metabolism in the arbuscular mycorrhizal symbiosis
    • Walter MH. 2013. Role of carotenoid metabolism in the arbuscular mycorrhizal symbiosis. Molecular Microbial Ecology of the Rhizosphere 1 & 2, 513-524.
    • (2013) Molecular Microbial Ecology of the Rhizosphere , vol.1-2 , pp. 513-524
    • Walter, M.H.1
  • 132
    • 79953065470 scopus 로고    scopus 로고
    • Carotenoids and their cleavage products: Biosynthesis and functions
    • Walter MH, Strack D. 2011. Carotenoids and their cleavage products: biosynthesis and functions. Natural Product Reports 28, 663-692.
    • (2011) Natural Product Reports , vol.28 , pp. 663-692
    • Walter, M.H.1    Strack, D.2
  • 133
    • 84949664392 scopus 로고    scopus 로고
    • Strigolactone signaling in Arabidopsis regulates shoot development by targeting D53-Like SMXL repressor proteins for ubiquitination and degradation
    • Wang L, Wang B, Jiang L, Liu X, Li X, Lu Z, Meng X, Wang Y, Smith SM, Li J. 2015. Strigolactone signaling in Arabidopsis regulates shoot development by targeting D53-Like SMXL repressor proteins for ubiquitination and degradation. The Plant Cell 27, 3128-3142.
    • (2015) The Plant Cell , vol.27 , pp. 3128-3142
    • Wang, L.1    Wang, B.2    Jiang, L.3    Liu, X.4    Li, X.5    Lu, Z.6    Meng, X.7    Wang, Y.8    Smith, S.M.9    Li, J.10
  • 134
    • 84863676736 scopus 로고    scopus 로고
    • The Arabidopsis ortholog of rice DWARF27 acts upstream of MAX1 in the control of plant development by strigolactones
    • Waters MT, Brewer PB, Bussell JD, Smith SM, Beveridge CA. 2012. The Arabidopsis ortholog of rice DWARF27 acts upstream of MAX1 in the control of plant development by strigolactones. Plant Physiology 159, 1073-1085.
    • (2012) Plant Physiology , vol.159 , pp. 1073-1085
    • Waters, M.T.1    Brewer, P.B.2    Bussell, J.D.3    Smith, S.M.4    Beveridge, C.A.5
  • 136
    • 84958748654 scopus 로고    scopus 로고
    • Physiological controls of chrysanthemum DgD27 gene expression in regulation of shoot branching
    • Wen C, Zhao Q, Nie J, Liu G, Shen L, Cheng C, Xi L, Ma N, Zhao L. 2016. Physiological controls of chrysanthemum DgD27 gene expression in regulation of shoot branching. Plant Cell Reports 35, 1053-1070.
    • (2016) Plant Cell Reports , vol.35 , pp. 1053-1070
    • Wen, C.1    Zhao, Q.2    Nie, J.3    Liu, G.4    Shen, L.5    Cheng, C.6    Xi, L.7    Ma, N.8    Zhao, L.9
  • 140
    • 0035519294 scopus 로고    scopus 로고
    • The presence of 9-cisbeta- carotene in cytochrome b6f complex from spinach
    • Yan J, Liu Y, Mao D, Li L, Kuang T. 2001. The presence of 9-cisbeta- carotene in cytochrome b6f complex from spinach. Biochimica et Biophysica Acta 1506, 182-188.
    • (2001) Biochimica et Biophysica Acta , vol.1506 , pp. 182-188
    • Yan, J.1    Liu, Y.2    Mao, D.3    Li, L.4    Kuang, T.5
  • 141
    • 84984684887 scopus 로고    scopus 로고
    • DWARF14 is a non-canonical hormone receptor for strigolactone
    • Yao R, Ming Z, Yan L, et al. 2016. DWARF14 is a non-canonical hormone receptor for strigolactone. Nature 536, 469-473.
    • (2016) Nature , vol.536 , pp. 469-473
    • Yao, R.1    Ming, Z.2    Yan, L.3
  • 143
    • 0031674613 scopus 로고    scopus 로고
    • Alectrol and orobanchol, germination stimulants for Orobanche minor, from its host red clover
    • Yokota T, Sakai H, Okuno K, Yoneyama K, Takeuchi Y. 1998. Alectrol and orobanchol, germination stimulants for Orobanche minor, from its host red clover. Phytochemistry 49, 1967-1973.
    • (1998) Phytochemistry , vol.49 , pp. 1967-1973
    • Yokota, T.1    Sakai, H.2    Okuno, K.3    Yoneyama, K.4    Takeuchi, Y.5
  • 144
    • 84886403760 scopus 로고    scopus 로고
    • Nitrogen and phosphorus fertilization negatively affects strigolactone production and exudation in sorghum
    • Yoneyama K, Xie X, Kisugi T, Nomura T, Yoneyama K. 2013. Nitrogen and phosphorus fertilization negatively affects strigolactone production and exudation in sorghum. Planta 238, 885-894.
    • (2013) Planta , vol.238 , pp. 885-894
    • Yoneyama, K.1    Xie, X.2    Kisugi, T.3    Nomura, T.4    Yoneyama, K.5
  • 145
    • 79953136756 scopus 로고    scopus 로고
    • Plant carotene cis-trans isomerase CRTISO: A new member of the FADRED-dependent flavoproteins catalyzing non-redox reactions
    • Yu Q, Ghisla S, Hirschberg J, Mann V, Beyer P. 2011. Plant carotene cis-trans isomerase CRTISO: a new member of the FADRED-dependent flavoproteins catalyzing non-redox reactions. The Journal of Biological Chemistry 286, 8666-8676.
    • (2011) The Journal of Biological Chemistry , vol.286 , pp. 8666-8676
    • Yu, Q.1    Ghisla, S.2    Hirschberg, J.3    Mann, V.4    Beyer, P.5
  • 146
    • 84921022340 scopus 로고    scopus 로고
    • Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis
    • Zhang Y, van Dijk AD, Scaffidi A, et al. 2014. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nature Chemical Biology 10, 1028-1033.
    • (2014) Nature Chemical Biology , vol.10 , pp. 1028-1033
    • Zhang, Y.1    Van Dijk, A.D.2    Scaffidi, A.3
  • 147
    • 84890492360 scopus 로고    scopus 로고
    • D14-SCFD3-dependent degradation of D53 regulates strigolactone signalling
    • Zhou F, Lin Q, Zhu L, et al. 2013. D14-SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature 504, 406-410.
    • (2013) Nature , vol.504 , pp. 406-410
    • Zhou, F.1    Lin, Q.2    Zhu, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.