메뉴 건너뛰기




Volumn 18, Issue 2, 2013, Pages 72-83

The biology of strigolactones

Author keywords

[No Author keywords available]

Indexed keywords

LACTONE; PHYTOHORMONE;

EID: 84873128093     PISSN: 13601385     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tplants.2012.10.003     Document Type: Review
Times cited : (271)

References (115)
  • 1
    • 33644647072 scopus 로고    scopus 로고
    • The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway
    • Matusova R., et al. The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol. 2005, 139:920-934.
    • (2005) Plant Physiol. , vol.139 , pp. 920-934
    • Matusova, R.1
  • 3
    • 0001654360 scopus 로고
    • Tentative molecular mechanisms for germination stimulation of Striga and Orobanche seeds by strigol and its synthetic analogues
    • Mangnus E.M., Zwanenburg B. Tentative molecular mechanisms for germination stimulation of Striga and Orobanche seeds by strigol and its synthetic analogues. J. Agric. Food Chem. 1992, 40:1066-1070.
    • (1992) J. Agric. Food Chem. , vol.40 , pp. 1066-1070
    • Mangnus, E.M.1    Zwanenburg, B.2
  • 4
    • 0000502250 scopus 로고
    • Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant
    • Cook C.E., et al. Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 1966, 154:1189-1190.
    • (1966) Science , vol.154 , pp. 1189-1190
    • Cook, C.E.1
  • 5
    • 0000302983 scopus 로고
    • A germination stimulant for parasitic flowering plants from Sorghum bicolor, a genuine host plant
    • Hauck C., et al. A germination stimulant for parasitic flowering plants from Sorghum bicolor, a genuine host plant. J. Plant Physiol. 1992, 139:474-478.
    • (1992) J. Plant Physiol. , vol.139 , pp. 474-478
    • Hauck, C.1
  • 6
    • 0002368894 scopus 로고
    • Germination stimulants produced by Vigna unguiculata Walp cv. Saunders Upright
    • Muller S., et al. Germination stimulants produced by Vigna unguiculata Walp cv. Saunders Upright. J. Plant Growth Regul. 1992, 11:77-84.
    • (1992) J. Plant Growth Regul. , vol.11 , pp. 77-84
    • Muller, S.1
  • 7
    • 60249091778 scopus 로고    scopus 로고
    • Fabacyl acetate, a germination stimulant for root parasitic plants from Pisum sativum
    • Xie X., et al. Fabacyl acetate, a germination stimulant for root parasitic plants from Pisum sativum. Phytochemistry 2009, 70:211-215.
    • (2009) Phytochemistry , vol.70 , pp. 211-215
    • Xie, X.1
  • 8
    • 0031674613 scopus 로고    scopus 로고
    • Alectrol and orobanchol, germination stimulants for Orobanche minor, from its host red clover
    • Yokota T., et al. Alectrol and orobanchol, germination stimulants for Orobanche minor, from its host red clover. Phytochemistry 1998, 49:1967-1973.
    • (1998) Phytochemistry , vol.49 , pp. 1967-1973
    • Yokota, T.1
  • 9
    • 0043072813 scopus 로고    scopus 로고
    • Secondary metabolite signalling in host-parasitic plant interactions
    • Bouwmeester H.J., et al. Secondary metabolite signalling in host-parasitic plant interactions. Curr. Opin. Plant Biol. 2003, 6:358-364.
    • (2003) Curr. Opin. Plant Biol. , vol.6 , pp. 358-364
    • Bouwmeester, H.J.1
  • 11
    • 72449154717 scopus 로고    scopus 로고
    • Parasitic plant management in sustainable agriculture
    • Rubiales D., et al. Parasitic plant management in sustainable agriculture. Weed Res. 2009, 49:1-5.
    • (2009) Weed Res. , vol.49 , pp. 1-5
    • Rubiales, D.1
  • 12
    • 20444471142 scopus 로고    scopus 로고
    • Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi
    • Akiyama K., et al. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 2005, 435:824-827.
    • (2005) Nature , vol.435 , pp. 824-827
    • Akiyama, K.1
  • 13
    • 52049107644 scopus 로고    scopus 로고
    • Arbuscular mycorrhiza: the mother of plant root endosymbioses
    • Parniske M. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat. Rev. Microbiol. 2008, 6:763-775.
    • (2008) Nat. Rev. Microbiol. , vol.6 , pp. 763-775
    • Parniske, M.1
  • 14
    • 43449116907 scopus 로고    scopus 로고
    • Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation
    • Lopez Raez J.A., et al. Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol. 2008, 178:863-874.
    • (2008) New Phytol. , vol.178 , pp. 863-874
    • Lopez Raez, J.A.1
  • 15
    • 33847319728 scopus 로고    scopus 로고
    • Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites
    • Yoneyama K., et al. Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta 2007, 225:1031-1038.
    • (2007) Planta , vol.225 , pp. 1031-1038
    • Yoneyama, K.1
  • 16
    • 79960040444 scopus 로고    scopus 로고
    • Quantification of the relationship between strigolactones and Striga hermonthica infection in rice under varying levels of nitrogen and phosphorus
    • Jamil M., et al. Quantification of the relationship between strigolactones and Striga hermonthica infection in rice under varying levels of nitrogen and phosphorus. Weed Res. 2011, 51:373-385.
    • (2011) Weed Res. , vol.51 , pp. 373-385
    • Jamil, M.1
  • 17
    • 84860817870 scopus 로고    scopus 로고
    • Striga hermonthica parasitism in maize in response to N and P fertilisers
    • Jamil M., et al. Striga hermonthica parasitism in maize in response to N and P fertilisers. Field Crops Res. 2012, 134:1-10.
    • (2012) Field Crops Res. , vol.134 , pp. 1-10
    • Jamil, M.1
  • 18
    • 79955414634 scopus 로고    scopus 로고
    • Strigolactones regulate protonema branching and act as a quorum sensing-like signal in the moss Physcomitrella patens
    • Proust H., et al. Strigolactones regulate protonema branching and act as a quorum sensing-like signal in the moss Physcomitrella patens. Development 2011, 138:1531-1539.
    • (2011) Development , vol.138 , pp. 1531-1539
    • Proust, H.1
  • 19
    • 51649112342 scopus 로고    scopus 로고
    • Inhibition of shoot branching by new terpenoid plant hormones
    • Umehara M., et al. Inhibition of shoot branching by new terpenoid plant hormones. Nature 2008, 455:195-200.
    • (2008) Nature , vol.455 , pp. 195-200
    • Umehara, M.1
  • 20
    • 51649096075 scopus 로고    scopus 로고
    • Strigolactone inhibition of shoot branching
    • Gomez-Roldan V., et al. Strigolactone inhibition of shoot branching. Nature 2008, 455:189-194.
    • (2008) Nature , vol.455 , pp. 189-194
    • Gomez-Roldan, V.1
  • 21
    • 46749151719 scopus 로고    scopus 로고
    • Biosynthetic considerations could assist the structure elucidation of host plant produced rhizosphere signalling compounds (strigolactones) for arbuscular mycorrhizal fungi and parasitic plants
    • Rani K., et al. Biosynthetic considerations could assist the structure elucidation of host plant produced rhizosphere signalling compounds (strigolactones) for arbuscular mycorrhizal fungi and parasitic plants. Plant Physiol. Biochem. 2008, 46:617-626.
    • (2008) Plant Physiol. Biochem. , vol.46 , pp. 617-626
    • Rani, K.1
  • 22
    • 20044371180 scopus 로고    scopus 로고
    • MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-erived branch-inhibiting hormone
    • Booker J., et al. MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-erived branch-inhibiting hormone. Dev. Cell 2005, 8:443-449.
    • (2005) Dev. Cell , vol.8 , pp. 443-449
    • Booker, J.1
  • 23
    • 79551702315 scopus 로고    scopus 로고
    • Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis
    • Kohlen W., et al. Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol. 2011, 155:974-987.
    • (2011) Plant Physiol. , vol.155 , pp. 974-987
    • Kohlen, W.1
  • 25
    • 77954965001 scopus 로고    scopus 로고
    • Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice
    • Umehara M., et al. Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice. Plant Cell Physiol. 2010, 51:1118-1126.
    • (2010) Plant Cell Physiol. , vol.51 , pp. 1118-1126
    • Umehara, M.1
  • 26
    • 67651115565 scopus 로고    scopus 로고
    • DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth
    • Lin H., et al. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell 2009, 21:1512-1525.
    • (2009) Plant Cell , vol.21 , pp. 1512-1525
    • Lin, H.1
  • 27
    • 33644762842 scopus 로고    scopus 로고
    • Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family
    • Auldridge M.E., et al. Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family. Plant J. 2006, 45:982-993.
    • (2006) Plant J. , vol.45 , pp. 982-993
    • Auldridge, M.E.1
  • 28
    • 79953065470 scopus 로고    scopus 로고
    • Carotenoids and their cleavage products: biosynthesis and functions
    • Walter M.H., Strack D. Carotenoids and their cleavage products: biosynthesis and functions. Nat. Prod. Rep. 2011, 28:663-692.
    • (2011) Nat. Prod. Rep. , vol.28 , pp. 663-692
    • Walter, M.H.1    Strack, D.2
  • 29
    • 14544289081 scopus 로고    scopus 로고
    • Retinal biosynthesis in Eubacteria: in vitro characterization of a novel carotenoid oxygenase from Synechocystis sp. PCC 6803
    • Ruch S., et al. Retinal biosynthesis in Eubacteria: in vitro characterization of a novel carotenoid oxygenase from Synechocystis sp. PCC 6803. Mol. Microbiol. 2005, 55:1015-1024.
    • (2005) Mol. Microbiol. , vol.55 , pp. 1015-1024
    • Ruch, S.1
  • 30
    • 1842338033 scopus 로고    scopus 로고
    • Specific oxidative leavage of carotenoids by VP14 of maize
    • Schwartz S.H., et al. Specific oxidative leavage of carotenoids by VP14 of maize. Science 1997, 276:1872-1874.
    • (1997) Science , vol.276 , pp. 1872-1874
    • Schwartz, S.H.1
  • 31
    • 58149293387 scopus 로고    scopus 로고
    • Carotenoid oxygenases involved in plant branching catalyse a highly specific conserved apocarotenoid cleavage reaction
    • Alder I.H., et al. Carotenoid oxygenases involved in plant branching catalyse a highly specific conserved apocarotenoid cleavage reaction. Biochem. J. 2008, 416:289-296.
    • (2008) Biochem. J. , vol.416 , pp. 289-296
    • Alder, I.H.1
  • 32
    • 8744286799 scopus 로고    scopus 로고
    • The biochemical characterization of two carotenoid cleavage enzymes from Arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching
    • Schwartz S.H., et al. The biochemical characterization of two carotenoid cleavage enzymes from Arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching. J. Biol. Chem. 2004, 279:46940-46945.
    • (2004) J. Biol. Chem. , vol.279 , pp. 46940-46945
    • Schwartz, S.H.1
  • 33
    • 84858301666 scopus 로고    scopus 로고
    • The path from β-carotene to carlactone, a strigolactone-like plant hormone
    • Alder A., et al. The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science 2012, 335:1348-1351.
    • (2012) Science , vol.335 , pp. 1348-1351
    • Alder, A.1
  • 34
    • 3342920134 scopus 로고    scopus 로고
    • MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule
    • Booker J., et al. MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr. Biol. 2004, 14:1232-1238.
    • (2004) Curr. Biol. , vol.14 , pp. 1232-1238
    • Booker, J.1
  • 35
    • 79953136756 scopus 로고    scopus 로고
    • Plant carotene cis-trans isomerase CRTISO
    • Yu Q., et al. Plant carotene cis-trans isomerase CRTISO. J. Biol. Chem. 2011, 286:8666-8676.
    • (2011) J. Biol. Chem. , vol.286 , pp. 8666-8676
    • Yu, Q.1
  • 36
    • 84863676736 scopus 로고    scopus 로고
    • The Arabidopsis ortholog of rice DWARF27 acts upstream of MAX1 in the control of plant development by strigolactones
    • Waters M.T., et al. The Arabidopsis ortholog of rice DWARF27 acts upstream of MAX1 in the control of plant development by strigolactones. Plant Physiol. 2012, 159:1073-1085.
    • (2012) Plant Physiol. , vol.159 , pp. 1073-1085
    • Waters, M.T.1
  • 37
    • 82755166960 scopus 로고    scopus 로고
    • Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2
    • Liu W., et al. Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell 2011, 23:3853-3865.
    • (2011) Plant Cell , vol.23 , pp. 3853-3865
    • Liu, W.1
  • 38
    • 64749101372 scopus 로고    scopus 로고
    • GRAS proteins form a DNA binding complex to induce gene expression during nodulation signaling in Medicago truncatula
    • Hirsch S., et al. GRAS proteins form a DNA binding complex to induce gene expression during nodulation signaling in Medicago truncatula. Plant Cell 2009, 21:545-557.
    • (2009) Plant Cell , vol.21 , pp. 545-557
    • Hirsch, S.1
  • 40
    • 78049446272 scopus 로고    scopus 로고
    • A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis
    • Bustos R., et al. A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLoS Genet. 2010, 6:e1001102.
    • (2010) PLoS Genet. , vol.6
    • Bustos, R.1
  • 41
    • 0035881704 scopus 로고    scopus 로고
    • A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae
    • Rubio V., et al. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev. 2001, 15:2122-2133.
    • (2001) Genes Dev. , vol.15 , pp. 2122-2133
    • Rubio, V.1
  • 42
    • 0036336159 scopus 로고    scopus 로고
    • MAX1 and MAX2 control shoot lateral branching in Arabidopsis
    • Stirnberg P., et al. MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 2002, 129:1131-1141.
    • (2002) Development , vol.129 , pp. 1131-1141
    • Stirnberg, P.1
  • 43
    • 33947682757 scopus 로고    scopus 로고
    • MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching
    • Stirnberg P., et al. MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. Plant J. 2007, 50:80-94.
    • (2007) Plant J. , vol.50 , pp. 80-94
    • Stirnberg, P.1
  • 44
    • 33751071837 scopus 로고    scopus 로고
    • Branching genes are conserved across species. Genes controlling a novel signal in Pea are coregulated by other long-distance signals
    • Johnson X., et al. Branching genes are conserved across species. Genes controlling a novel signal in Pea are coregulated by other long-distance signals. Plant Physiol. 2006, 142:1014-1026.
    • (2006) Plant Physiol. , vol.142 , pp. 1014-1026
    • Johnson, X.1
  • 45
    • 14644409769 scopus 로고    scopus 로고
    • Suppression of tiller bud activity in tillering dwarf mutants of rice
    • Ishikawa S., et al. Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol. 2005, 46:79-86.
    • (2005) Plant Cell Physiol. , vol.46 , pp. 79-86
    • Ishikawa, S.1
  • 46
    • 68949130180 scopus 로고    scopus 로고
    • D14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers
    • Arite T., et al. D14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol. 2009, 50:1416-1424.
    • (2009) Plant Cell Physiol. , vol.50 , pp. 1416-1424
    • Arite, T.1
  • 47
    • 74549121922 scopus 로고    scopus 로고
    • New genes in the strigolactone-related shoot branching pathway
    • Beveridge C.A., Kyozuka J. New genes in the strigolactone-related shoot branching pathway. Curr. Opin. Plant Biol. 2010, 13:34-39.
    • (2010) Curr. Opin. Plant Biol. , vol.13 , pp. 34-39
    • Beveridge, C.A.1    Kyozuka, J.2
  • 48
    • 69249209640 scopus 로고    scopus 로고
    • Identification and characterization of HTD2: A novel gene negatively regulating tiller bud outgrowth in rice
    • Liu W., et al. Identification and characterization of HTD2: A novel gene negatively regulating tiller bud outgrowth in rice. Planta 2009, 230:649-658.
    • (2009) Planta , vol.230 , pp. 649-658
    • Liu, W.1
  • 49
    • 84863230556 scopus 로고    scopus 로고
    • Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis
    • Waters M.T., et al. Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. Development (Cambridge) 2012, 139:1285-1295.
    • (2012) Development (Cambridge) , vol.139 , pp. 1285-1295
    • Waters, M.T.1
  • 50
    • 19544379019 scopus 로고    scopus 로고
    • The F-box protein TIR1 is an auxin receptor
    • Dharmasiri N., et al. The F-box protein TIR1 is an auxin receptor. Nature 2005, 435:441-445.
    • (2005) Nature , vol.435 , pp. 441-445
    • Dharmasiri, N.1
  • 51
    • 78049273600 scopus 로고    scopus 로고
    • The perception of gibberellins: clues from receptor structure
    • Ueguchi-Tanaka M., Matsuoka M. The perception of gibberellins: clues from receptor structure. Curr. Opin. Plant Biol. 2010, 13:503-508.
    • (2010) Curr. Opin. Plant Biol. , vol.13 , pp. 503-508
    • Ueguchi-Tanaka, M.1    Matsuoka, M.2
  • 52
    • 84868514386 scopus 로고    scopus 로고
    • DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone
    • Hamiaux C., et al. DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr. Biol. 2012, 22:1-5.
    • (2012) Curr. Biol. , vol.22 , pp. 1-5
    • Hamiaux, C.1
  • 53
    • 79957699893 scopus 로고    scopus 로고
    • F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana
    • Nelson D.C., et al. F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:8897-8902.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 8897-8902
    • Nelson, D.C.1
  • 54
    • 36849038444 scopus 로고    scopus 로고
    • Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites
    • Yoneyama K., et al. Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta 2007, 227:125-132.
    • (2007) Planta , vol.227 , pp. 125-132
    • Yoneyama, K.1
  • 55
    • 34548502219 scopus 로고    scopus 로고
    • DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice
    • Arite T., et al. DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J. 2007, 51:1019-1029.
    • (2007) Plant J. , vol.51 , pp. 1019-1029
    • Arite, T.1
  • 56
    • 33751007029 scopus 로고    scopus 로고
    • The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds
    • Zou J., et al. The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant J. 2006, 48:687-698.
    • (2006) Plant J. , vol.48 , pp. 687-698
    • Zou, J.1
  • 57
    • 0038722744 scopus 로고    scopus 로고
    • MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea
    • Sorefan K., et al. MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev. 2003, 17:1469-1474.
    • (2003) Genes Dev. , vol.17 , pp. 1469-1474
    • Sorefan, K.1
  • 58
    • 29544432672 scopus 로고    scopus 로고
    • Hormonally controlled expression of the Arabidopsis MAX4 shoot branching regulatory gene
    • Bainbridge K., et al. Hormonally controlled expression of the Arabidopsis MAX4 shoot branching regulatory gene. Plant J. 2005, 44:569-580.
    • (2005) Plant J. , vol.44 , pp. 569-580
    • Bainbridge, K.1
  • 59
    • 38149109010 scopus 로고    scopus 로고
    • A high-resolution root spatiotemporal map reveals dominant expression patterns
    • Brady S.M., et al. A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 2007, 318:801-806.
    • (2007) Science , vol.318 , pp. 801-806
    • Brady, S.M.1
  • 60
    • 19944428972 scopus 로고    scopus 로고
    • The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots
    • Blilou I., et al. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 2005, 433:39-44.
    • (2005) Nature , vol.433 , pp. 39-44
    • Blilou, I.1
  • 61
    • 22144471286 scopus 로고    scopus 로고
    • Sites and regulation of auxin biosynthesis in Arabidopsis roots
    • Ljung K., et al. Sites and regulation of auxin biosynthesis in Arabidopsis roots. Plant Cell 2005, 17:1090-1104.
    • (2005) Plant Cell , vol.17 , pp. 1090-1104
    • Ljung, K.1
  • 62
    • 0345167799 scopus 로고    scopus 로고
    • Local, efflux-dependent auxin gradients as a common module for plant organ formation
    • Benková E., et al. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 2003, 115:591-602.
    • (2003) Cell , vol.115 , pp. 591-602
    • Benková, E.1
  • 63
    • 33947319330 scopus 로고    scopus 로고
    • Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis
    • De Smet I., et al. Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis. Development 2007, 134:681-690.
    • (2007) Development , vol.134 , pp. 681-690
    • De Smet, I.1
  • 64
    • 77956527844 scopus 로고    scopus 로고
    • Oscillating gene expression determines competence for periodic Arabidopsis root branching
    • Moreno-Risueno M.A., et al. Oscillating gene expression determines competence for periodic Arabidopsis root branching. Science 2010, 329:1306-1311.
    • (2010) Science , vol.329 , pp. 1306-1311
    • Moreno-Risueno, M.A.1
  • 65
    • 77956210642 scopus 로고    scopus 로고
    • Strigolactones enhance competition between shoot branches by dampening auxin transport
    • Crawford S., et al. Strigolactones enhance competition between shoot branches by dampening auxin transport. Development 2010, 137:2905-2913.
    • (2010) Development , vol.137 , pp. 2905-2913
    • Crawford, S.1
  • 66
    • 84860369587 scopus 로고    scopus 로고
    • Strigolactone positively controls crown root elongation in rice
    • Arite T., et al. Strigolactone positively controls crown root elongation in rice. J. Plant Growth Regul. 2012, 31:165-172.
    • (2012) J. Plant Growth Regul. , vol.31 , pp. 165-172
    • Arite, T.1
  • 67
    • 77952546101 scopus 로고    scopus 로고
    • Strigolactones' effect on root growth and root-hair elongation may be mediated by auxin-efflux carriers
    • Koltai H., et al. Strigolactones' effect on root growth and root-hair elongation may be mediated by auxin-efflux carriers. J. Plant Growth Regul. 2010, 29:129-136.
    • (2010) J. Plant Growth Regul. , vol.29 , pp. 129-136
    • Koltai, H.1
  • 68
    • 79551696791 scopus 로고    scopus 로고
    • Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones?
    • Ruyter-Spira C., et al. Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones?. Plant Physiol. 2011, 155:721-734.
    • (2011) Plant Physiol. , vol.155 , pp. 721-734
    • Ruyter-Spira, C.1
  • 69
    • 78650751473 scopus 로고    scopus 로고
    • Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis
    • Kapulnik Y., et al. Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta 2011, 233:209-216.
    • (2011) Planta , vol.233 , pp. 209-216
    • Kapulnik, Y.1
  • 70
    • 79954596954 scopus 로고    scopus 로고
    • Strigolactones are regulators of root development
    • Koltai H. Strigolactones are regulators of root development. New Phytol. 2011, 190:545-549.
    • (2011) New Phytol. , vol.190 , pp. 545-549
    • Koltai, H.1
  • 71
    • 35548964342 scopus 로고    scopus 로고
    • Auxin transport is sufficient to generate a maximum and gradient guiding root growth
    • Grieneisen V., et al. Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 2007, 449:1008-1013.
    • (2007) Nature , vol.449 , pp. 1008-1013
    • Grieneisen, V.1
  • 72
    • 63149091053 scopus 로고    scopus 로고
    • Cytokinin regulates root meristem activity via modulation of the polar auxin transport
    • RůŽička K., et al. Cytokinin regulates root meristem activity via modulation of the polar auxin transport. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:4284-4289.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 4284-4289
    • RůŽička, K.1
  • 73
    • 70349656751 scopus 로고    scopus 로고
    • Abscisic acid represses growth of the Arabidopsis embryonic axis after germination by enhancing auxin signaling
    • Belin C., et al. Abscisic acid represses growth of the Arabidopsis embryonic axis after germination by enhancing auxin signaling. Plant Cell 2009, 21:2253-2268.
    • (2009) Plant Cell , vol.21 , pp. 2253-2268
    • Belin, C.1
  • 74
    • 34548324778 scopus 로고    scopus 로고
    • Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution
    • Ruzicka K., et al. Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 2007, 19:2197-2212.
    • (2007) Plant Cell , vol.19 , pp. 2197-2212
    • Ruzicka, K.1
  • 75
    • 79960793496 scopus 로고    scopus 로고
    • Ethylene inhibits lateral root development, increases IAA transport and expression of PIN3 and PIN7 auxin efflux carriers
    • Lewis D.R., et al. Ethylene inhibits lateral root development, increases IAA transport and expression of PIN3 and PIN7 auxin efflux carriers. Development 2011, 138:3485-3495.
    • (2011) Development , vol.138 , pp. 3485-3495
    • Lewis, D.R.1
  • 76
    • 67650982771 scopus 로고    scopus 로고
    • Gibberellin signaling in the endodermis controls Arabidopsis root meristem size
    • Ubeda-Tomás S., et al. Gibberellin signaling in the endodermis controls Arabidopsis root meristem size. Curr. Biol. 2009, 19:1194-1199.
    • (2009) Curr. Biol. , vol.19 , pp. 1194-1199
    • Ubeda-Tomás, S.1
  • 77
    • 77955267294 scopus 로고    scopus 로고
    • Root apex transition zone: a signalling response nexus in the root
    • Baluaka F., et al. Root apex transition zone: a signalling response nexus in the root. Trends Plant Sci. 2010, 15:402-408.
    • (2010) Trends Plant Sci. , vol.15 , pp. 402-408
    • Baluaka, F.1
  • 78
    • 62549165835 scopus 로고    scopus 로고
    • Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor
    • Pérez-Torres C.A., et al. Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell 2008, 20:3258-3272.
    • (2008) Plant Cell , vol.20 , pp. 3258-3272
    • Pérez-Torres, C.A.1
  • 79
    • 70349223008 scopus 로고    scopus 로고
    • Interactions between auxin and strigolactone in shoot branching control
    • Hayward A., et al. Interactions between auxin and strigolactone in shoot branching control. Plant Physiol. 2009, 151:400-412.
    • (2009) Plant Physiol. , vol.151 , pp. 400-412
    • Hayward, A.1
  • 80
    • 84866412775 scopus 로고    scopus 로고
    • The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis
    • Kohlen W., et al. The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytol. 2012, 196:535-547.
    • (2012) New Phytol. , vol.196 , pp. 535-547
    • Kohlen, W.1
  • 81
    • 84858291479 scopus 로고    scopus 로고
    • A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching
    • Kretzschmar T., et al. A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 2012, 483:341-344.
    • (2012) Nature , vol.483 , pp. 341-344
    • Kretzschmar, T.1
  • 82
    • 0031400788 scopus 로고    scopus 로고
    • The rms1 mutant of pea has elevated indole-3-acetic acid levels and reduced root-sap zeatin riboside content but increased branching controlled by graft-transmissible signal(s)
    • Beveridge C.A., et al. The rms1 mutant of pea has elevated indole-3-acetic acid levels and reduced root-sap zeatin riboside content but increased branching controlled by graft-transmissible signal(s). Plant Physiol. 1997, 115:1251-1258.
    • (1997) Plant Physiol. , vol.115 , pp. 1251-1258
    • Beveridge, C.A.1
  • 83
    • 0034974722 scopus 로고    scopus 로고
    • Long-distance signaling and the control of branching in therms1 mutant of pea
    • Foo E., et al. Long-distance signaling and the control of branching in therms1 mutant of pea. Plant Physiol. 2001, 126:203-209.
    • (2001) Plant Physiol. , vol.126 , pp. 203-209
    • Foo, E.1
  • 84
    • 0002947439 scopus 로고    scopus 로고
    • Highly branched phenotype of the petunia dad1-1 mutant is reversed by grafting
    • Napoli C. Highly branched phenotype of the petunia dad1-1 mutant is reversed by grafting. Plant Physiol. 1996, 111:27-37.
    • (1996) Plant Physiol. , vol.111 , pp. 27-37
    • Napoli, C.1
  • 85
    • 0036774555 scopus 로고    scopus 로고
    • Micrografting techniques for testing long-distance signalling in Arabidopsis
    • Turnbull C.G.N., et al. Micrografting techniques for testing long-distance signalling in Arabidopsis. Plant J. 2002, 32:255-262.
    • (2002) Plant J. , vol.32 , pp. 255-262
    • Turnbull, C.G.N.1
  • 86
    • 84055224111 scopus 로고    scopus 로고
    • Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants
    • Agusti J., et al. Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:20242-20247.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 20242-20247
    • Agusti, J.1
  • 87
    • 0034878384 scopus 로고    scopus 로고
    • Unravelling cell wall formation in the woody dicot stem
    • Mellerowicz E.J., et al. Unravelling cell wall formation in the woody dicot stem. Plant Mol. Biol. 2001, 47:239-274.
    • (2001) Plant Mol. Biol. , vol.47 , pp. 239-274
    • Mellerowicz, E.J.1
  • 88
    • 84864532268 scopus 로고    scopus 로고
    • Origin of strigolactones in the green lineage
    • Delaux P-M., et al. Origin of strigolactones in the green lineage. New Phytol. 2012, 195:857-871.
    • (2012) New Phytol. , vol.195 , pp. 857-871
    • Delaux, P.-M.1
  • 89
    • 79953041816 scopus 로고    scopus 로고
    • Signal integration in the control of shoot branching
    • Domagalska M.A., Leyser O. Signal integration in the control of shoot branching. Nat. Rev. Mol. Cell Biol. 2011, 12:211-221.
    • (2011) Nat. Rev. Mol. Cell Biol. , vol.12 , pp. 211-221
    • Domagalska, M.A.1    Leyser, O.2
  • 90
    • 0032759216 scopus 로고    scopus 로고
    • Autoinhibition of indoleacetic acid transport in the shoots of two-branched pea (Pisum sativum) plants and its relationship to correlative dominance
    • Li C-J., Bangerth F. Autoinhibition of indoleacetic acid transport in the shoots of two-branched pea (Pisum sativum) plants and its relationship to correlative dominance. Physiologia Plantarum 1999, 106:415-420.
    • (1999) Physiologia Plantarum , vol.106 , pp. 415-420
    • Li, C.-J.1    Bangerth, F.2
  • 91
    • 77956866109 scopus 로고
    • The control of the patterned differentiation of vascular tissues
    • Academic Press
    • Sachs T., Woolhouse H.W. The control of the patterned differentiation of vascular tissues. Advances in Botanical Research 1981, Academic Press, pp. 151-262.
    • (1981) Advances in Botanical Research , pp. 151-262
    • Sachs, T.1    Woolhouse, H.W.2
  • 92
    • 79551642634 scopus 로고    scopus 로고
    • Competitive canalization of PIN-dependent auxin flow from axillary buds controls pea bud outgrowth
    • Balla J., et al. Competitive canalization of PIN-dependent auxin flow from axillary buds controls pea bud outgrowth. Plant J. 2011, 65:571-577.
    • (2011) Plant J. , vol.65 , pp. 571-577
    • Balla, J.1
  • 93
    • 0032545346 scopus 로고    scopus 로고
    • Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue
    • Gälweiler L., et al. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 1998, 282:2226-2230.
    • (1998) Science , vol.282 , pp. 2226-2230
    • Gälweiler, L.1
  • 94
    • 66149099230 scopus 로고    scopus 로고
    • Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis
    • Brewer P.B., et al. Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis. Plant Physiol. 2009, 150:482-493.
    • (2009) Plant Physiol. , vol.150 , pp. 482-493
    • Brewer, P.B.1
  • 95
    • 84859618990 scopus 로고    scopus 로고
    • Models of long-distance transport: how is carrier-dependent auxin transport regulated in the stem?
    • Renton M., et al. Models of long-distance transport: how is carrier-dependent auxin transport regulated in the stem?. New Phytol. 2012, 194:704-715.
    • (2012) New Phytol. , vol.194 , pp. 704-715
    • Renton, M.1
  • 96
    • 84855268692 scopus 로고    scopus 로고
    • The pea TCP transcription factor PsBRC1 acts downstream of strigolactones to control shoot branching
    • Braun N., et al. The pea TCP transcription factor PsBRC1 acts downstream of strigolactones to control shoot branching. Plant Physiol. 2012, 158:225-238.
    • (2012) Plant Physiol. , vol.158 , pp. 225-238
    • Braun, N.1
  • 97
    • 84855293873 scopus 로고    scopus 로고
    • Antagonistic action of strigolactone and cytokinin in bud outgrowth control
    • Dun E.A., et al. Antagonistic action of strigolactone and cytokinin in bud outgrowth control. Plant Physiol. 2012, 158:487-498.
    • (2012) Plant Physiol. , vol.158 , pp. 487-498
    • Dun, E.A.1
  • 98
    • 0001380966 scopus 로고
    • Role of auxins and cytokinins in release of buds from dominance
    • Sachs T., Thimann V. Role of auxins and cytokinins in release of buds from dominance. Am. J. Bot. 1967, 54:136-144.
    • (1967) Am. J. Bot. , vol.54 , pp. 136-144
    • Sachs, T.1    Thimann, V.2
  • 99
    • 2542570262 scopus 로고    scopus 로고
    • Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin-cytokinin-regulated development
    • Nordström A., et al. Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin-cytokinin-regulated development. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:8039-8044.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 8039-8044
    • Nordström, A.1
  • 100
    • 33644769070 scopus 로고    scopus 로고
    • Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance
    • Tanaka M., et al. Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. Plant J. 2006, 45:1028-1036.
    • (2006) Plant J. , vol.45 , pp. 1028-1036
    • Tanaka, M.1
  • 101
    • 77955001633 scopus 로고    scopus 로고
    • FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice
    • Minakuchi K., et al. FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice. Plant Cell Physiol. 2010, 51:1127-1135.
    • (2010) Plant Cell Physiol. , vol.51 , pp. 1127-1135
    • Minakuchi, K.1
  • 102
    • 34250621278 scopus 로고    scopus 로고
    • Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds
    • Aguilar-Martínez J.A., et al. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell 2007, 19:458-472.
    • (2007) Plant Cell , vol.19 , pp. 458-472
    • Aguilar-Martínez, J.A.1
  • 103
    • 34548445150 scopus 로고    scopus 로고
    • Arabidopsis TEOSINTE BRANCHED1-LIKE 1 regulates axillary bud outgrowth and is homologous to monocot TEOSINTE BRANCHED1
    • Finlayson S.A. Arabidopsis TEOSINTE BRANCHED1-LIKE 1 regulates axillary bud outgrowth and is homologous to monocot TEOSINTE BRANCHED1. Plant Cell Physiol. 2007, 48:667-677.
    • (2007) Plant Cell Physiol. , vol.48 , pp. 667-677
    • Finlayson, S.A.1
  • 104
    • 1642450635 scopus 로고    scopus 로고
    • Fluridone and norflurazon, carotenoid-biosynthesis inhibitors, promote seed conditioning and germination of the holoparasite Orobanche minor
    • Chae S.H., et al. Fluridone and norflurazon, carotenoid-biosynthesis inhibitors, promote seed conditioning and germination of the holoparasite Orobanche minor. Physiol. Plant. 2004, 120:328-337.
    • (2004) Physiol. Plant. , vol.120 , pp. 328-337
    • Chae, S.H.1
  • 105
    • 65549128678 scopus 로고    scopus 로고
    • Unique phytochrome responses of the holoparasitic plant Orobanche minor
    • Takagi K., et al. Unique phytochrome responses of the holoparasitic plant Orobanche minor. New Phytol. 2009, 182:965-974.
    • (2009) New Phytol. , vol.182 , pp. 965-974
    • Takagi, K.1
  • 106
    • 84855889057 scopus 로고    scopus 로고
    • Thermoinhibition uncovers a role for strigolactones in Arabidopsis seed germination
    • Toh S., et al. Thermoinhibition uncovers a role for strigolactones in Arabidopsis seed germination. Plant Cell Physiol. 2012, 53:107-117.
    • (2012) Plant Cell Physiol. , vol.53 , pp. 107-117
    • Toh, S.1
  • 107
    • 37249035640 scopus 로고    scopus 로고
    • The F-Box protein MAX2 functions as a positive regulator of photomorphogenesis in Arabidopsis
    • Shen H., et al. The F-Box protein MAX2 functions as a positive regulator of photomorphogenesis in Arabidopsis. Plant Physiol. 2007, 145:1471-1483.
    • (2007) Plant Physiol. , vol.145 , pp. 1471-1483
    • Shen, H.1
  • 108
    • 84861371605 scopus 로고    scopus 로고
    • MAX2 affects multiple hormones to promote photomorphogenesis
    • Shen H., et al. MAX2 affects multiple hormones to promote photomorphogenesis. Mol. Plant 2012, 5:750-762.
    • (2012) Mol. Plant , vol.5 , pp. 750-762
    • Shen, H.1
  • 109
    • 77956935950 scopus 로고    scopus 로고
    • A small-molecule screen identifies new functions for the plant hormone strigolactone
    • Tsuchiya Y., et al. A small-molecule screen identifies new functions for the plant hormone strigolactone. Nat. Chem. Biol. 2010, 6:741-749.
    • (2010) Nat. Chem. Biol. , vol.6 , pp. 741-749
    • Tsuchiya, Y.1
  • 110
    • 83055198321 scopus 로고    scopus 로고
    • Developmental defects in mutants of the PsbP domain protein 5 in Arabidopsis thaliana
    • Roose J.L., et al. Developmental defects in mutants of the PsbP domain protein 5 in Arabidopsis thaliana. PLoS ONE 2011, 6:e28624.
    • (2011) PLoS ONE , vol.6
    • Roose, J.L.1
  • 111
    • 77954960325 scopus 로고    scopus 로고
    • Structural requirements of strigolactones for hyphal branching in AM fungi
    • Akiyama K., et al. Structural requirements of strigolactones for hyphal branching in AM fungi. Plant Cell Physiol. 2010, 51:1104-1117.
    • (2010) Plant Cell Physiol. , vol.51 , pp. 1104-1117
    • Akiyama, K.1
  • 112
    • 81055156964 scopus 로고    scopus 로고
    • Pre-attachment Striga hermonthica resistance of New Rice for Africa (NERICA) cultivars based on low strigolactone production
    • Jamil M., et al. Pre-attachment Striga hermonthica resistance of New Rice for Africa (NERICA) cultivars based on low strigolactone production. New Phytol. 2011, 192:964-975.
    • (2011) New Phytol. , vol.192 , pp. 964-975
    • Jamil, M.1
  • 113
    • 77955002183 scopus 로고    scopus 로고
    • Structure-activity relationship of naturally occurring strigolactones in Orobanche minor seed germination stimulation
    • Kim H.I., et al. Structure-activity relationship of naturally occurring strigolactones in Orobanche minor seed germination stimulation. J. Pesticide Sci. 2010, 35:344-347.
    • (2010) J. Pesticide Sci. , vol.35 , pp. 344-347
    • Kim, H.I.1
  • 114
    • 84864657658 scopus 로고    scopus 로고
    • Structure-activity relationship studies of strigolactone-related molecules for branching inhibition in garden pea: molecule design for shoot branching
    • Boyer F-D., et al. Structure-activity relationship studies of strigolactone-related molecules for branching inhibition in garden pea: molecule design for shoot branching. Plant Physiol. 2012, 159:1524-1544.
    • (2012) Plant Physiol. , vol.159 , pp. 1524-1544
    • Boyer, F.-D.1
  • 115
    • 0028038524 scopus 로고
    • Branching mutant rms-2 in Pisum sativum. Grafting studies and endogenous indole-3-acetic acid levels
    • Beveridge C.A., et al. Branching mutant rms-2 in Pisum sativum. Grafting studies and endogenous indole-3-acetic acid levels. Plant Physiol. 1994, 104:953-959.
    • (1994) Plant Physiol. , vol.104 , pp. 953-959
    • Beveridge, C.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.