메뉴 건너뛰기




Volumn 27, Issue 11, 2015, Pages 3128-3142

Strigolactone signaling in Arabidopsis regulates shoot development by targeting D53-like SMXL repressor proteins for ubiquitination and degradation

Author keywords

[No Author keywords available]

Indexed keywords

ARABIDOPSIS PROTEIN; GREEN FLUORESCENT PROTEIN; LACTONE; PROTEIN BINDING; REPRESSOR PROTEIN;

EID: 84949664392     PISSN: 10404651     EISSN: 1532298X     Source Type: Journal    
DOI: 10.1105/tpc.15.00605     Document Type: Article
Times cited : (313)

References (57)
  • 1
    • 84919363337 scopus 로고    scopus 로고
    • Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro
    • Abe, S., et al. (2014). Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro. Proc. Natl. Acad. Sci. USA 111: 18084–18089.
    • (2014) Proc. Natl. Acad. Sci. USA , vol.111 , pp. 18084-18089
    • Abe, S.1
  • 2
    • 34250621278 scopus 로고    scopus 로고
    • Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds
    • Aguilar-Martínez, J.A., Poza-Carrión, C., and Cubas, P. (2007). Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell 19: 458–472.
    • (2007) Plant Cell , vol.19 , pp. 458-472
    • Aguilar-Martínez, J.A.1    Poza-Carrión, C.2    Cubas, P.3
  • 3
    • 20444471142 scopus 로고    scopus 로고
    • Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi
    • Akiyama, K., Matsuzaki, K., and Hayashi, H. (2005). Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435: 824–827.
    • (2005) Nature , vol.435 , pp. 824-827
    • Akiyama, K.1    Matsuzaki, K.2    Hayashi, H.3
  • 4
    • 84928882976 scopus 로고    scopus 로고
    • Strigolactones, a novel carotenoid-derived plant hormone. Annu
    • Al-Babili, S., and Bouwmeester, H.J. (2015). Strigolactones, a novel carotenoid-derived plant hormone. Annu. Rev. Plant Biol. 66: 161–186.
    • (2015) Rev. Plant Biol , vol.66 , pp. 161-186
    • Al-Babili, S.1    Bouwmeester, H.J.2
  • 6
    • 63549106001 scopus 로고    scopus 로고
    • Positive fluorescent selection permits precise, rapid, and in-depth overexpression analysis in plant protoplasts
    • Bargmann, B.O., and Birnbaum, K.D. (2009). Positive fluorescent selection permits precise, rapid, and in-depth overexpression analysis in plant protoplasts. Plant Physiol. 149: 1231–1239.
    • (2009) Plant Physiol , vol.149 , pp. 1231-1239
    • Bargmann, B.O.1    Birnbaum, K.D.2
  • 7
    • 84906771565 scopus 로고    scopus 로고
    • Strigolactone signalling: Standing on the shoulders of DWARFs
    • Bennett, T., and Leyser, O. (2014). Strigolactone signalling: standing on the shoulders of DWARFs. Curr. Opin. Plant Biol. 22: 7–13.
    • (2014) Curr. Opin. Plant Biol , vol.22 , pp. 7-13
    • Bennett, T.1    Leyser, O.2
  • 8
    • 3342920134 scopus 로고    scopus 로고
    • MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule
    • Booker, J., Auldridge, M., Wills, S., McCarty, D., Klee, H., and Leyser, O. (2004). MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr. Biol. 14: 1232–1238.
    • (2004) Curr. Biol , vol.14 , pp. 1232-1238
    • Booker, J.1    Auldridge, M.2    Wills, S.3    McCarty, D.4    Klee, H.5    Leyser, O.6
  • 9
    • 84855268692 scopus 로고    scopus 로고
    • The pea TCP transcription factor PsBRC1 acts downstream of strigolactones to control shoot branching
    • Braun, N., et al. (2012). The pea TCP transcription factor PsBRC1 acts downstream of strigolactones to control shoot branching. Plant Physiol. 158: 225–238.
    • (2012) Plant Physiol , vol.158 , pp. 225-238
    • Braun, N.1
  • 11
    • 84855254094 scopus 로고    scopus 로고
    • The TOPLESS interactome: A framework for gene repression in Arabidopsis
    • Causier, B., Ashworth, M., Guo, W., and Davies, B. (2012). The TOPLESS interactome: a framework for gene repression in Arabidopsis. Plant Physiol. 158: 423–438.
    • (2012) Plant Physiol , vol.158 , pp. 423-438
    • Causier, B.1    Ashworth, M.2    Guo, W.3    Davies, B.4
  • 12
    • 84876273469 scopus 로고    scopus 로고
    • Roles of DgBRC1 in regulation of lateral branching in chrysanthemum (Dendranthema 3 grandiflora cv. Jinba)
    • Chen, X., Zhou, X., Xi, L., Li, J., Zhao, R., Ma, N., and Zhao, L. (2013). Roles of DgBRC1 in regulation of lateral branching in chrysanthemum (Dendranthema 3 grandiflora cv. Jinba). PLoS One 8: e61717.
    • (2013) Plos One , vol.8
    • Chen, X.1    Zhou, X.2    Xi, L.3    Li, J.4    Zhao, R.5    Ma, N.6    Zhao, L.7
  • 13
    • 84899132374 scopus 로고    scopus 로고
    • Strigolactone promotes degradation of DWARF14, an a/b hydrolase essential for strigolactone signaling in Arabidopsis
    • Chevalier, F., Nieminen, K., Sánchez-Ferrero, J.C., Rodríguez, M.L., Chagoyen, M., Hardtke, C.S., and Cubas, P. (2014). Strigolactone promotes degradation of DWARF14, an a/b hydrolase essential for strigolactone signaling in Arabidopsis. Plant Cell 26: 1134–1150.
    • (2014) Plant Cell , vol.26 , pp. 1134-1150
    • Chevalier, F.1    Nieminen, K.2    Sánchez-Ferrero, J.C.3    Rodríguez, M.L.4    Chagoyen, M.5    Hardtke, C.S.6    Cubas, P.7
  • 14
    • 0032447801 scopus 로고    scopus 로고
    • Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana
    • Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735–743.
    • (1998) Plant J , vol.16 , pp. 735-743
    • Clough, S.J.1    Bent, A.F.2
  • 15
    • 0000502250 scopus 로고
    • Germination of witchweed (Striga lutea Lour.): Isolation and properties of a potent stimulant
    • Cook, C.E., Whichard, L.P., Turner, B., Wall, M.E., and Egley, G.H. (1966). Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154: 1189–1190.
    • (1966) Science , vol.154 , pp. 1189-1190
    • Cook, C.E.1    Whichard, L.P.2    Turner, B.3    Wall, M.E.4    Egley, G.H.5
  • 16
    • 33645931034 scopus 로고    scopus 로고
    • Increased expression of MAP KINASE KINASE7 causes deficiency in polar auxin transport and leads to plant architectural abnormality in Arabidopsis
    • Dai, Y., Wang, H., Li, B., Huang, J., Liu, X., Zhou, Y., Mou, Z., and Li, J. (2006). Increased expression of MAP KINASE KINASE7 causes deficiency in polar auxin transport and leads to plant architectural abnormality in Arabidopsis. Plant Cell 18: 308–320.
    • (2006) Plant Cell , vol.18 , pp. 308-320
    • Dai, Y.1    Wang, H.2    Li, B.3    Huang, J.4    Liu, X.5    Zhou, Y.6    Mou, Z.7    Li, J.8
  • 17
    • 33745461461 scopus 로고    scopus 로고
    • Arabidopsis GLUTAMINE-RICH PROTEIN23 is essential for early embryogenesis and encodes a novel nuclear PPR motif protein that interacts with RNA polymerase II subunit III
    • Ding, Y.H., Liu, N.Y., Tang, Z.S., Liu, J., and Yang, W.C. (2006). Arabidopsis GLUTAMINE-RICH PROTEIN23 is essential for early embryogenesis and encodes a novel nuclear PPR motif protein that interacts with RNA polymerase II subunit III. Plant Cell 18: 815–830.
    • (2006) Plant Cell , vol.18 , pp. 815-830
    • Ding, Y.H.1    Liu, N.Y.2    Tang, Z.S.3    Liu, J.4    Yang, W.C.5
  • 18
    • 79953041816 scopus 로고    scopus 로고
    • Signal integration in the control of shoot branching
    • Domagalska, M.A., and Leyser, O. (2011). Signal integration in the control of shoot branching. Nat. Rev. Mol. Cell Biol. 12: 211–221.
    • (2011) Nat. Rev. Mol. Cell Biol , vol.12 , pp. 211-221
    • Domagalska, M.A.1    Leyser, O.2
  • 19
    • 65249107137 scopus 로고    scopus 로고
    • Roles for auxin, cytokinin, and strigolactone in regulating shoot branching
    • Ferguson, B.J., and Beveridge, C.A. (2009). Roles for auxin, cytokinin, and strigolactone in regulating shoot branching. Plant Physiol. 149: 1929–1944.
    • (2009) Plant Physiol , vol.149 , pp. 1929-1944
    • Ferguson, B.J.1    Beveridge, C.A.2
  • 20
    • 51649096075 scopus 로고    scopus 로고
    • Strigolactone inhibition of shoot branching
    • Gomez-Roldan, V., et al. (2008). Strigolactone inhibition of shoot branching. Nature 455: 189–194.
    • (2008) Nature , vol.455 , pp. 189-194
    • Gomez-Roldan, V.1
  • 21
    • 84876752524 scopus 로고    scopus 로고
    • BRANCHED1 promotes axillary bud dormancy in response to shade in Arabidopsis
    • González-Grandío, E., Poza-Carrión, C., Sorzano, C.O., and Cubas, P. (2013). BRANCHED1 promotes axillary bud dormancy in response to shade in Arabidopsis. Plant Cell 25: 834–850.
    • (2013) Plant Cell , vol.25 , pp. 834-850
    • González-Grandío, E.1    Poza-Carrión, C.2    Sorzano, C.O.3    Cubas, P.4
  • 22
    • 84868514386 scopus 로고    scopus 로고
    • DAD2 is an a/b hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone
    • Hamiaux, C., Drummond, R.S., Janssen, B.J., Ledger, S.E., Cooney, J.M., Newcomb, R.D., and Snowden, K.C. (2012). DAD2 is an a/b hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr. Biol. 22: 2032–2036.
    • (2012) Curr. Biol , vol.22 , pp. 2032-2036
    • Hamiaux, C.1    Drummond, R.S.2    Janssen, B.J.3    Ledger, S.E.4    Cooney, J.M.5    Newcomb, R.D.6    Snowden, K.C.7
  • 23
    • 84890449326 scopus 로고    scopus 로고
    • DWARF 53 acts as a repressor of strigolactone signalling in rice
    • Jiang, L., et al. (2013). DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature 504: 401–405.
    • (2013) Nature , vol.504 , pp. 401-405
    • Jiang, L.1
  • 25
    • 67651115565 scopus 로고    scopus 로고
    • DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth
    • Lin, H., Wang, R., Qian, Q., Yan, M., Meng, X., Fu, Z., Yan, C., Jiang, B., Su, Z., Li, J., and Wang, Y. (2009). DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell 21: 1512–1525.
    • (2009) Plant Cell , vol.21 , pp. 1512-1525
    • Lin, H.1    Wang, R.2    Qian, Q.3    Yan, M.4    Meng, X.5    Fu, Z.6    Yan, C.7    Jiang, B.8    Su, Z.9    Li, J.10    Wang, Y.11
  • 26
    • 33744992478 scopus 로고    scopus 로고
    • TOPLESS regulates apical embryonic fate in Arabidopsis
    • Long, J.A., Ohno, C., Smith, Z.R., and Meyerowitz, E.M. (2006). TOPLESS regulates apical embryonic fate in Arabidopsis. Science 312: 1520–1523.
    • (2006) Science , vol.312 , pp. 1520-1523
    • Long, J.A.1    Ohno, C.2    Smith, Z.R.3    Meyerowitz, E.M.4
  • 27
    • 84888411699 scopus 로고    scopus 로고
    • Genome-wide binding analysis of the transcription activator ideal plant architecture1 reveals a complex network regulating rice plant architecture
    • Lu, Z., et al. (2013). Genome-wide binding analysis of the transcription activator ideal plant architecture1 reveals a complex network regulating rice plant architecture. Plant Cell 25: 3743–3759.
    • (2013) Plant Cell , vol.25 , pp. 3743-3759
    • Lu, Z.1
  • 30
    • 77950439369 scopus 로고    scopus 로고
    • NINJA connects the co-repressor TOPLESS to jasmonate signalling
    • Pauwels, L., et al. (2010). NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464: 788–791.
    • (2010) Nature , vol.464 , pp. 788-791
    • Pauwels, L.1
  • 32
    • 84905001770 scopus 로고    scopus 로고
    • Strigolactones regulate rice tiller angle by attenuating shoot gravitropism through inhibiting auxin biosynthesis
    • Sang, D., et al. (2014). Strigolactones regulate rice tiller angle by attenuating shoot gravitropism through inhibiting auxin biosynthesis. Proc. Natl. Acad. Sci. USA 111: 11199–11204.
    • (2014) Proc. Natl. Acad. Sci. USA , vol.111 , pp. 11199-11204
    • Sang, D.1
  • 34
    • 84903650267 scopus 로고    scopus 로고
    • Strigolactone hormones and their stereoisomers signal through two related receptor proteins to induce different physiological responses in Arabidopsis
    • Scaffidi, A., Waters, M.T., Sun, Y.K., Skelton, B.W., Dixon, K.W., Ghisalberti, E.L., Flematti, G.R., and Smith, S.M. (2014). Strigolactone hormones and their stereoisomers signal through two related receptor proteins to induce different physiological responses in Arabidopsis. Plant Physiol. 165: 1221–1232.
    • (2014) Plant Physiol , vol.165 , pp. 1221-1232
    • Scaffidi, A.1    Waters, M.T.2    Sun, Y.K.3    Skelton, B.W.4    Dixon, K.W.5    Ghisalberti, E.L.6    Flematti, G.R.7    Smith, S.M.8
  • 36
    • 37249035640 scopus 로고    scopus 로고
    • The F-box protein MAX2 functions as a positive regulator of photomorphogenesis in Arabidopsis
    • Shen, H., Luong, P., and Huq, E. (2007). The F-box protein MAX2 functions as a positive regulator of photomorphogenesis in Arabidopsis. Plant Physiol. 145: 1471–1483.
    • (2007) Plant Physiol , vol.145 , pp. 1471-1483
    • Shen, H.1    Luong, P.2    Huq, E.3
  • 37
    • 84903626362 scopus 로고    scopus 로고
    • Signalling and responses to strigolactones and karrikins
    • Smith, S.M., and Li, J. (2014). Signalling and responses to strigolactones and karrikins. Curr. Opin. Plant Biol. 21: 23–29.
    • (2014) Curr. Opin. Plant Biol , vol.21 , pp. 23-29
    • Smith, S.M.1    Li, J.2
  • 38
    • 84868517378 scopus 로고    scopus 로고
    • Strigolactones: Destructiondependent perception
    • Smith, S.M., and Waters, M.T. (2012). Strigolactones: destructiondependent perception? Curr. Biol. 22: R924–R927.
    • (2012) Curr. Biol , vol.22 , pp. R924-R927
    • Smith, S.M.1    Waters, M.T.2
  • 40
    • 84883230977 scopus 로고    scopus 로고
    • SUPPRESSOR OF MORE AXILLARY GROWTH2 1 controls seed germination and seedling development in Arabidopsis
    • Stanga, J.P., Smith, S.M., Briggs, W.R., and Nelson, D.C. (2013). SUPPRESSOR OF MORE AXILLARY GROWTH2 1 controls seed germination and seedling development in Arabidopsis. Plant Physiol. 163: 318–330.
    • (2013) Plant Physiol , vol.163 , pp. 318-330
    • Stanga, J.P.1    Smith, S.M.2    Briggs, W.R.3    Nelson, D.C.4
  • 41
    • 33947682757 scopus 로고    scopus 로고
    • MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching
    • Stirnberg, P., Furner, I.J., and Ottoline Leyser, H.M. (2007). MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. Plant J. 50: 80–94.
    • (2007) Plant J , vol.50 , pp. 80-94
    • Stirnberg, P.1    Furner, I.J.2    Ottoline Leyser, H.M.3
  • 42
    • 0036336159 scopus 로고    scopus 로고
    • MAX1 and MAX2 control shoot lateral branching in Arabidopsis
    • Stirnberg, P., van De Sande, K., and Leyser, H.M. (2002). MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 129: 1131–1141.
    • (2002) Development , vol.129 , pp. 1131-1141
    • Stirnberg, P.1    Van De Sande, K.2    Leyser, H.M.3
  • 43
    • 40449131628 scopus 로고    scopus 로고
    • TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis
    • Szemenyei, H., Hannon, M., and Long, J.A. (2008). TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science 319: 1384–1386.
    • (2008) Science , vol.319 , pp. 1384-1386
    • Szemenyei, H.1    Hannon, M.2    Long, J.A.3
  • 44
    • 79957613599 scopus 로고    scopus 로고
    • MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods
    • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731–2739.
    • (2011) Mol. Biol. Evol , vol.28 , pp. 2731-2739
    • Tamura, K.1    Peterson, D.2    Peterson, N.3    Stecher, G.4    Nei, M.5    Kumar, S.6
  • 46
    • 84906065976 scopus 로고    scopus 로고
    • Strigolactones and the control of plant development: Lessons from shoot branching
    • Waldie, T., McCulloch, H., and Leyser, O. (2014). Strigolactones and the control of plant development: lessons from shoot branching. Plant J. 79: 607–622.
    • (2014) Plant J , vol.79 , pp. 607-622
    • Waldie, T.1    McCulloch, H.2    Leyser, O.3
  • 47
    • 44949162989 scopus 로고    scopus 로고
    • Molecular basis of plant architecture
    • Wang, Y., and Li, J. (2008). Molecular basis of plant architecture. Annu. Rev. Plant Biol. 59: 253–279.
    • (2008) Annu. Rev. Plant Biol , vol.59 , pp. 253-279
    • Wang, Y.1    Li, J.2
  • 48
    • 84863230556 scopus 로고    scopus 로고
    • Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis
    • Waters, M.T., Nelson, D.C., Scaffidi, A., Flematti, G.R., Sun, Y.K., Dixon, K.W., and Smith, S.M. (2012). Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. Development 139: 1285–1295.
    • (2012) Development , vol.139 , pp. 1285-1295
    • Waters, M.T.1    Nelson, D.C.2    Scaffidi, A.3    Flematti, G.R.4    Sun, Y.K.5    Dixon, K.W.6    Smith, S.M.7
  • 50
    • 84907985326 scopus 로고    scopus 로고
    • Action of strigolactones in plants
    • Xiong, G., Wang, Y., and Li, J. (2014). Action of strigolactones in plants. Enzymes 35: 57–84.
    • (2014) Enzymes , vol.35 , pp. 57-84
    • Xiong, G.1    Wang, Y.2    Li, J.3
  • 51
    • 84862989445 scopus 로고    scopus 로고
    • Cytoplasmic assembly and selective nuclear import of Arabidopsis Argonaute4/siRNA complexes
    • Ye, R., Wang, W., Iki, T., Liu, C., Wu, Y., Ishikawa, M., Zhou, X., and Qi, Y. (2012). Cytoplasmic assembly and selective nuclear import of Arabidopsis Argonaute4/siRNA complexes. Mol. Cell 46: 859–870.
    • (2012) Mol. Cell , vol.46 , pp. 859-870
    • Ye, R.1    Wang, W.2    Iki, T.3    Liu, C.4    Wu, Y.5    Ishikawa, M.6    Zhou, X.7    Qi, Y.8
  • 52
    • 34447099171 scopus 로고    scopus 로고
    • Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis
    • Yoo, S.D., Cho, Y.H., and Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2: 1565–1572.
    • (2007) Nat. Protoc , vol.2 , pp. 1565-1572
    • Yoo, S.D.1    Cho, Y.H.2    Sheen, J.3
  • 53
    • 84921022340 scopus 로고    scopus 로고
    • Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis
    • Zhang, Y., et al. (2014). Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nat. Chem. Biol. 10: 1028–1033.
    • (2014) Nat. Chem. Biol , vol.10 , pp. 1028-1033
    • Zhang, Y.1
  • 55
    • 84874661987 scopus 로고    scopus 로고
    • Crystal structures of two phytohormone signal-transducing a/b hydrolases: Karrikin-signaling KAI2 and strigolactone-signaling DWARF14
    • Zhao, L.H., et al. (2013). Crystal structures of two phytohormone signal-transducing a/b hydrolases: karrikin-signaling KAI2 and strigolactone-signaling DWARF14. Cell Res. 23: 436–439.
    • (2013) Cell Res , vol.23 , pp. 436-439
    • Zhao, L.H.1
  • 56
    • 84946500797 scopus 로고    scopus 로고
    • Destabilization of strigolactone receptor DWARF14 by binding of ligand and E3-ligase signaling effector DWARF3
    • Zhao, L.H., et al. (2015). Destabilization of strigolactone receptor DWARF14 by binding of ligand and E3-ligase signaling effector DWARF3. Cell Res. 25: 1219–1236.
    • (2015) Cell Res , vol.25 , pp. 1219-1236
    • Zhao, L.H.1
  • 57
    • 84890492360 scopus 로고    scopus 로고
    • D14-SCFD3-dependent degradation of D53 regulates strigolactone signalling
    • Zhou, F., et al. (2013). D14-SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature 504: 406–410.
    • (2013) Nature , vol.504 , pp. 406-410
    • Zhou, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.