-
1
-
-
33846950348
-
Challenges in engineering microbes for biofuels production
-
1:CAS:528:DC%2BD2sXhsVShsrg%3D
-
Stephanopoulos G. Challenges in engineering microbes for biofuels production. Science. 2007;315:801-4.
-
(2007)
Science
, vol.315
, pp. 801-804
-
-
Stephanopoulos, G.1
-
2
-
-
56949086558
-
When will fossil fuel reserves be diminished?
-
Shafiee S, Topal E. When will fossil fuel reserves be diminished? Energy Policy. 2009;37:181-9.
-
(2009)
Energy Policy
, vol.37
, pp. 181-189
-
-
Shafiee, S.1
Topal, E.2
-
3
-
-
82355181037
-
Natural resource demand of global biofuels in the Anthropocene: A review
-
Liao W, Heijungs R, Huppes G. Natural resource demand of global biofuels in the Anthropocene: a review. Renew Sustain Energy Rev. 2012;16:996-1003.
-
(2012)
Renew Sustain Energy Rev
, vol.16
, pp. 996-1003
-
-
Liao, W.1
Heijungs, R.2
Huppes, G.3
-
4
-
-
84897395233
-
Evolution retrospective for alternative fuels: First to fourth generation
-
1:CAS:528:DC%2BC2cXhtVCjtrnN
-
Dutta K, Daverey A, Lin J-G. Evolution retrospective for alternative fuels: first to fourth generation. Renew Energy. 2014;69:114-22.
-
(2014)
Renew Energy
, vol.69
, pp. 114-122
-
-
Dutta, K.1
Daverey, A.2
Lin, J.-G.3
-
5
-
-
77955118014
-
Microbial biosynthesis of alkanes
-
1:CAS:528:DC%2BC3cXptlCltLc%3D
-
Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB. Microbial biosynthesis of alkanes. Science. 2010;329:559-62.
-
(2010)
Science
, vol.329
, pp. 559-562
-
-
Schirmer, A.1
Rude, M.A.2
Li, X.3
Popova, E.4
Del Cardayre, S.B.5
-
6
-
-
84983491031
-
Enzymes for fatty acid-based hydrocarbon biosynthesis
-
1:CAS:528:DC%2BC28XhsVamtr%2FK
-
Herman NA, Zhang W. Enzymes for fatty acid-based hydrocarbon biosynthesis. Curr Opin Chem Biol. 2016;35:22-8.
-
(2016)
Curr Opin Chem Biol
, vol.35
, pp. 22-28
-
-
Herman, N.A.1
Zhang, W.2
-
7
-
-
84937764293
-
Recent progress in hydrocarbon biofuel synthesis: Pathways and enzymes
-
1:CAS:528:DC%2BC2MXlvVemt7g%3D
-
Lin FM, Marsh ENG, Lin XN. Recent progress in hydrocarbon biofuel synthesis: pathways and enzymes. Chin Chem Lett. 2015;26:431-4.
-
(2015)
Chin Chem Lett
, vol.26
, pp. 431-434
-
-
Lin, F.M.1
Marsh, E.N.G.2
Lin, X.N.3
-
8
-
-
21844434930
-
Structure and chemistry of cytochrome P450
-
1:CAS:528:DC%2BD2MXjtl2ns70%3D
-
Denisov IG, Makris TM, Sligar SG, Ilme S. Structure and chemistry of cytochrome P450. Chem Rev. 2005;105:2253-77.
-
(2005)
Chem Rev
, vol.105
, pp. 2253-2277
-
-
Denisov, I.G.1
Makris, T.M.2
Sligar, S.G.3
Ilme, S.4
-
9
-
-
13844322067
-
Cytochrome P450: Nature's most versatile biological catalyst
-
1:CAS:528:DC%2BD2MXisVWjtrs%3D
-
Coon MJ. Cytochrome P450: nature's most versatile biological catalyst. Annu Rev Pharmacol Toxicol. 2005;45:1-25.
-
(2005)
Annu Rev Pharmacol Toxicol
, vol.45
, pp. 1-25
-
-
Coon, M.J.1
-
10
-
-
84861333293
-
The monooxygenase, peroxidase, and peroxygenase properties of cytochrome P450
-
1:CAS:528:DC%2BC38XitFKitbo%3D
-
Hrycay EG, Bandiera SM. The monooxygenase, peroxidase, and peroxygenase properties of cytochrome P450. Arch Biochem Biophys. 2012;522:71-89.
-
(2012)
Arch Biochem Biophys
, vol.522
, pp. 71-89
-
-
Hrycay, E.G.1
Bandiera, S.M.2
-
11
-
-
79953214587
-
Terminal olefin (1-alkene) biosynthesis by a novel p450 fatty acid decarboxylase from Jeotgalicoccus species
-
1:CAS:528:DC%2BC3MXhtVWktbrF
-
Rude MA, Baron TS, Shane B, Murtaza A, Cardayre SB, Del Andreas S. Terminal olefin (1-alkene) biosynthesis by a novel p450 fatty acid decarboxylase from Jeotgalicoccus species. Appl Environ Microbiol. 2011;77:1718.
-
(2011)
Appl Environ Microbiol
, vol.77
, pp. 1718
-
-
Rude, M.A.1
Baron, T.S.2
Shane, B.3
Murtaza, A.4
Cardayre, S.B.5
Del, A.S.6
-
12
-
-
85029129737
-
In vitro oxidative decarboxylation of free fatty acids to terminal alkenes by two new P450 peroxygenases
-
Xu H, Ning L, Yang W, Fang B, Wang C, Wang Y, Xu J, Collin S, Laeuffer F, Fourage L, Li S. In vitro oxidative decarboxylation of free fatty acids to terminal alkenes by two new P450 peroxygenases. Biotechnol Biofuels. 2017;10:208.
-
(2017)
Biotechnol Biofuels
, vol.10
, pp. 208
-
-
Xu, H.1
Ning, L.2
Yang, W.3
Fang, B.4
Wang, C.5
Wang, Y.6
Xu, J.7
Collin, S.8
Laeuffer, F.9
Fourage, L.10
Li, S.11
-
13
-
-
84930227374
-
Monooxygenase, peroxidase and peroxygenase properties and reaction mechanisms of cytochrome P450 enzymes
-
Hrycay EG, Bandiera SM. Monooxygenase, peroxidase and peroxygenase properties and reaction mechanisms of cytochrome P450 enzymes. Oxygen Transport Tissue XXXIII. 2016;851:1-61.
-
(2016)
Oxygen Transport Tissue XXXIII
, vol.851
, pp. 1-61
-
-
Hrycay, E.G.1
Bandiera, S.M.2
-
14
-
-
0034064119
-
Fatty acid-specific, regiospecific, and stereospecific hydroxylation by cytochrome P450 (CYP152B1) from Sphingomonas paucimobilis: Substrate structure required for alpha-hydroxylation
-
1:CAS:528:DC%2BD3cXjt1Gju7g%3D
-
Matsunaga I, Sumimoto T, Ueda A, Kusunose E, Ichihara K. Fatty acid-specific, regiospecific, and stereospecific hydroxylation by cytochrome P450 (CYP152B1) from Sphingomonas paucimobilis: substrate structure required for alpha-hydroxylation. Lipids. 2000;35:365-71.
-
(2000)
Lipids
, vol.35
, pp. 365-371
-
-
Matsunaga, I.1
Sumimoto, T.2
Ueda, A.3
Kusunose, E.4
Ichihara, K.5
-
15
-
-
84919897861
-
Microbial biosynthesis of medium-chain 1-alkenes by a nonheme iron oxidase
-
1:CAS:528:DC%2BC2cXitVClu7vO
-
Rui Z, Li X, Zhu X, Liu J, Domigan B, Barr I, Cate JH, Zhang W. Microbial biosynthesis of medium-chain 1-alkenes by a nonheme iron oxidase. Proc Natl Acad Sci USA. 2014;111:18237-42.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. 18237-18242
-
-
Rui, Z.1
Li, X.2
Zhu, X.3
Liu, J.4
Domigan, B.5
Barr, I.6
Cate, J.H.7
Zhang, W.8
-
16
-
-
84948756586
-
Discovery of a family of desaturase-like enzymes for 1-alkene biosynthesis
-
1:CAS:528:DC%2BC2MXhslCjtb7L
-
Rui Z, Harris NC, Zhu X, Huang W, Zhang W. Discovery of a family of desaturase-like enzymes for 1-alkene biosynthesis. Acs Catal. 2015;5:7091-4.
-
(2015)
Acs Catal
, vol.5
, pp. 7091-7094
-
-
Rui, Z.1
Harris, N.C.2
Zhu, X.3
Huang, W.4
Zhang, W.5
-
17
-
-
34250904151
-
Hydrogen peroxide dependent monooxygenations by tricking the substrate recognition of cytochrome P450BSβ
-
Shoji O, Fujishiro T, Nakajima H, Kim M, Nagano S, Shiro Y, Watanabe Y. Hydrogen peroxide dependent monooxygenations by tricking the substrate recognition of cytochrome P450BSβ. Angew Chem Int Ed Engl. 2007;119:3730-3.
-
(2007)
Angew Chem Int Ed Engl.
, vol.119
, pp. 3730-3733
-
-
Shoji, O.1
Fujishiro, T.2
Nakajima, H.3
Kim, M.4
Nagano, S.5
Shiro, Y.6
Watanabe, Y.7
-
18
-
-
84874073210
-
Light-driven biocatalysis with cytochrome P450 peroxygenases
-
1:CAS:528:DC%2BC3sXjtVCqur8%3D
-
Girhard M, Kunigk E, Tihovsky S, Shumyantseva VV, Urlacher VB. Light-driven biocatalysis with cytochrome P450 peroxygenases. Biotechnol Appl Biochem. 2013;60:111-8.
-
(2013)
Biotechnol Appl Biochem
, vol.60
, pp. 111-118
-
-
Girhard, M.1
Kunigk, E.2
Tihovsky, S.3
Shumyantseva, V.V.4
Urlacher, V.B.5
-
19
-
-
85050856340
-
Harnessing a P450 fatty acid decarboxylase from Macrococcus caseolyticus for microbial biosynthesis of odd chain terminal alkenes
-
Lee JW, Niraula NP, Trinh CT. Harnessing a P450 fatty acid decarboxylase from Macrococcus caseolyticus for microbial biosynthesis of odd chain terminal alkenes. Metab Eng Commun. 2018;7:e00076.
-
(2018)
Metab Eng Commun
, vol.7
, pp. e00076
-
-
Lee, J.W.1
Niraula, N.P.2
Trinh, C.T.3
-
20
-
-
84928485740
-
Decarboxylation of fatty acids to terminal alkenes by cytochrome P450 compound i
-
1:CAS:528:DC%2BC2MXlvVartrw%3D
-
Grant JL, Hsieh CH, Makris TM. Decarboxylation of fatty acids to terminal alkenes by cytochrome P450 compound I. J Am Chem Soc. 2015;137:4940-3.
-
(2015)
J Am Chem Soc
, vol.137
, pp. 4940-4943
-
-
Grant, J.L.1
Hsieh, C.H.2
Makris, T.M.3
-
21
-
-
84986285597
-
Catalytic strategy for carbon-carbon bond scission by the cytochrome P450 OleT
-
1:CAS:528:DC%2BC28Xhtl2mtLzP
-
Grant JL, Mitchell ME, Makris TM. Catalytic strategy for carbon-carbon bond scission by the cytochrome P450 OleT. Proc Natl Acad Sci USA. 2016;113:10049.
-
(2016)
Proc Natl Acad Sci USA
, vol.113
, pp. 10049
-
-
Grant, J.L.1
Mitchell, M.E.2
Makris, T.M.3
-
22
-
-
84942544091
-
Oxidative decarboxylation of short-chain fatty acids to 1-alkenes
-
1:CAS:528:DC%2BC2MXhtVensbvP
-
Dennig A, Kuhn M, Tassoti S, Thiessenhusen A, Gilch S, Bulter T, Haas T, Hall M, Faber K. Oxidative decarboxylation of short-chain fatty acids to 1-alkenes. Angew Chem Int Ed Engl. 2015;54:8819-22.
-
(2015)
Angew Chem Int Ed Engl
, vol.54
, pp. 8819-8822
-
-
Dennig, A.1
Kuhn, M.2
Tassoti, S.3
Thiessenhusen, A.4
Gilch, S.5
Bulter, T.6
Haas, T.7
Hall, M.8
Faber, K.9
-
23
-
-
85021982634
-
The enigmatic P450 decarboxylase OleT is capable of, but evolved to frustrate, oxygen rebound chemistry
-
1:CAS:528:DC%2BC2sXps1arsLk%3D
-
Hsieh CH, Huang X, Amaya JA, Rutland CD, Keys CL, Groves JT, Austin RN, Makris TM. The enigmatic P450 decarboxylase OleT is capable of, but evolved to frustrate, oxygen rebound chemistry. Biochemistry. 2017;56:3347-57.
-
(2017)
Biochemistry
, vol.56
, pp. 3347-3357
-
-
Hsieh, C.H.1
Huang, X.2
Amaya, J.A.3
Rutland, C.D.4
Keys, C.L.5
Groves, J.T.6
Austin, R.N.7
Makris, T.M.8
-
24
-
-
84975816964
-
Exploring substrate scope and stereoselectivity of P450 peroxygenase OleTJE in olefin-forming oxidative decarboxylation
-
1:CAS:528:DC%2BC28Xptlyrtr8%3D
-
Wang J, Lonsdale R, Reetz MT. Exploring substrate scope and stereoselectivity of P450 peroxygenase OleTJE in olefin-forming oxidative decarboxylation. Chem Commun. 2016;52:8131.
-
(2016)
Chem Commun
, vol.52
, pp. 8131
-
-
Wang, J.1
Lonsdale, R.2
Reetz, M.T.3
-
25
-
-
84971671300
-
Expanding the substrate scope and reactivity of cytochrome P450 OleT
-
1:CAS:528:DC%2BC28XhtFertrnE
-
Hsieh CH, Makris TM. Expanding the substrate scope and reactivity of cytochrome P450 OleT. Biochem Biophys Res Commun. 2016;476:462-6.
-
(2016)
Biochem Biophys Res Commun
, vol.476
, pp. 462-466
-
-
Hsieh, C.H.1
Makris, T.M.2
-
26
-
-
84896721360
-
Hydrogen peroxide-independent production of α -alkenes by OleT JE P450 fatty acid decarboxylase
-
Liu Y, Wang C, Yan J, Zhang W, Guan W, Lu X, Li S. Hydrogen peroxide-independent production of α -alkenes by OleT JE P450 fatty acid decarboxylase. Biotechnol Biofuels. 2014;7:28.
-
(2014)
Biotechnol Biofuels
, vol.7
, pp. 28
-
-
Liu, Y.1
Wang, C.2
Yan, J.3
Zhang, W.4
Guan, W.5
Lu, X.6
Li, S.7
-
27
-
-
84961785318
-
Origin of the regioselective fatty acid hydroxylation versus decarboxylation by a cytochrome P450 peroxygenase: What drives the reaction to biofuel production?
-
1:CAS:528:DC%2BC28Xks1Cis7k%3D
-
Faponle AS, Quesne MG, de Visser SP. Origin of the regioselective fatty acid hydroxylation versus decarboxylation by a cytochrome P450 peroxygenase: what drives the reaction to biofuel production? Chemistry. 2016;22:5478-83.
-
(2016)
Chemistry
, vol.22
, pp. 5478-5483
-
-
Faponle, A.S.1
Quesne, M.G.2
De Visser, S.P.3
-
28
-
-
84896795640
-
Structure and biochemical properties of the alkene producing cytochrome P450 OleTJE (CYP152L1) from the Jeotgalicoccus sp. 8456 bacterium
-
1:CAS:528:DC%2BC2cXjvVyksbc%3D
-
Belcher J, Mclean KJ, Matthews S, Woodward LS, Fisher K, Rigby SEJ, Nelson DR, Potts D, Baynham MT, Parker DA. Structure and biochemical properties of the alkene producing cytochrome P450 OleTJE (CYP152L1) from the Jeotgalicoccus sp. 8456 bacterium. J Biol Chem. 2014;289:6535-50.
-
(2014)
J Biol Chem
, vol.289
, pp. 6535-6550
-
-
Belcher, J.1
McLean, K.J.2
Matthews, S.3
Woodward, L.S.4
Fisher, K.5
Rigby, S.E.J.6
Nelson, D.R.7
Potts, D.8
Baynham, M.T.9
Parker, D.A.10
-
29
-
-
85016085563
-
Molecular basis of P450 OleTJE: An investigation of substrate binding mechanism and major pathways
-
1:CAS:528:DC%2BC2sXlt1Smtb0%3D
-
Du J, Liu L, Guo L, Yao X, Yang J. Molecular basis of P450 OleTJE: an investigation of substrate binding mechanism and major pathways. J Comput Aid Mol Des. 2017;31:483-95.
-
(2017)
J Comput Aid Mol des
, vol.31
, pp. 483-495
-
-
Du, J.1
Liu, L.2
Guo, L.3
Yao, X.4
Yang, J.5
-
30
-
-
85016282618
-
Catalytic determinants of alkene production by the cytochrome P450 peroxygenase OleTJE
-
1:CAS:528:DC%2BC2sXkvVyqu70%3D
-
Matthews S, Belcher JD, Tee KL, Girvan HM, McLean KJ, Rigby SE, Levy CW, Leys D, Parker DA, Blankley RT, Munro AW. Catalytic determinants of alkene production by the cytochrome P450 peroxygenase OleTJE. J Biol Chem. 2017;292:5128-43.
-
(2017)
J Biol Chem
, vol.292
, pp. 5128-5143
-
-
Matthews, S.1
Belcher, J.D.2
Tee, K.L.3
Girvan, H.M.4
McLean, K.J.5
Rigby, S.E.6
Levy, C.W.7
Leys, D.8
Parker, D.A.9
Blankley, R.T.10
Munro, A.W.11
-
31
-
-
85014882029
-
Mutagenesis and redox partners analysis of the P450 fatty acid decarboxylase OleTJE
-
Fang B, Xu H, Liu Y, Qi F, Zhang W, Chen H, Wang C, Wang Y, Yang W, Li S. Mutagenesis and redox partners analysis of the P450 fatty acid decarboxylase OleTJE. Sci Rep. 2017;7:44258.
-
(2017)
Sci Rep
, vol.7
, pp. 44258
-
-
Fang, B.1
Xu, H.2
Liu, Y.3
Qi, F.4
Zhang, W.5
Chen, H.6
Wang, C.7
Wang, Y.8
Yang, W.9
Li, S.10
-
32
-
-
84959490870
-
Mixed regiospecificity compromises alkene synthesis by a cytochrome P450 peroxygenase from Methylobacterium populi
-
1:CAS:528:DC%2BC28XjvVGlsbc%3D
-
Amaya JA, Rutland CD, Makris TM. Mixed regiospecificity compromises alkene synthesis by a cytochrome P450 peroxygenase from Methylobacterium populi. J Inorg Biochem. 2016;158:11-6.
-
(2016)
J Inorg Biochem
, vol.158
, pp. 11-16
-
-
Amaya, J.A.1
Rutland, C.D.2
Makris, T.M.3
-
33
-
-
84921685440
-
Photobiocatalytic decarboxylation for olefin synthesis
-
1:CAS:528:DC%2BC2cXitFWjsrbP
-
Zachos I, Gassmeyer SK, Bauer D, Sieber V, Hollmann F, Kourist R. Photobiocatalytic decarboxylation for olefin synthesis. Chem Commun. 2015;51:1918-21.
-
(2015)
Chem Commun
, vol.51
, pp. 1918-1921
-
-
Zachos, I.1
Gassmeyer, S.K.2
Bauer, D.3
Sieber, V.4
Hollmann, F.5
Kourist, R.6
-
34
-
-
84971517407
-
Light-driven enzymatic decarboxylation
-
Köninger K, Grote M, Zachos I, Hollmann F, Kourist R. Light-driven enzymatic decarboxylation. J Vis Exp Jove. 2016;111:53439.
-
(2016)
J Vis Exp Jove
, vol.111
, pp. 53439
-
-
Köninger, K.1
Grote, M.2
Zachos, I.3
Hollmann, F.4
Kourist, R.5
-
35
-
-
0018142676
-
Salt-tolerance mechanism of Staphylococcus aureus: Role of proline and water in osmoregulation of S. Aureus (author's transl)
-
1:CAS:528:DyaE1MXhtVWl
-
Koujima I. Salt-tolerance mechanism of Staphylococcus aureus: role of proline and water in osmoregulation of S. aureus (author's transl). Nippon Saikingaku Zasshi. 1978;33:643-9.
-
(1978)
Nippon Saikingaku Zasshi
, vol.33
, pp. 643-649
-
-
Koujima, I.1
-
36
-
-
35648980991
-
Salinicoccus kunmingensis sp. nov., a moderately halophilic bacterium isolated from a salt mine in Yunnan, south-west China
-
1:CAS:528:DC%2BD2sXhsVanu7rK
-
Chen Y, Cui X, Pukall R, Li H, Yang Y, Xu L, Wen M, Peng Q, Jiang C. Salinicoccus kunmingensis sp. nov., a moderately halophilic bacterium isolated from a salt mine in Yunnan, south-west China. Int J Syst Evol Microbiol. 2007;57:2327-32.
-
(2007)
Int J Syst Evol Microbiol
, vol.57
, pp. 2327-2332
-
-
Chen, Y.1
Cui, X.2
Pukall, R.3
Li, H.4
Yang, Y.5
Xu, L.6
Wen, M.7
Peng, Q.8
Jiang, C.9
-
37
-
-
84863241234
-
Salinicoccus qingdaonensis sp. nov., isolated from coastal seawater during a bloom of green algae
-
1:CAS:528:DC%2BC38Xms1Wjt78%3D
-
Qu Z, Li Z, Zhang X, Zhang X. Salinicoccus qingdaonensis sp. nov., isolated from coastal seawater during a bloom of green algae. Int J Syst Evol Micr. 2012;62:545.
-
(2012)
Int J Syst Evol Micr
, vol.62
, pp. 545
-
-
Qu, Z.1
Li, Z.2
Zhang, X.3
Zhang, X.4
-
38
-
-
79960175296
-
Jeotgalicoccus halophilus sp. nov., isolated from salt lakes
-
1:CAS:528:DC%2BC3MXhtFSkurjI
-
Liu W, Jiang L, Guo C, Yang S. Jeotgalicoccus halophilus sp. nov., isolated from salt lakes. Int J Syst Evol Microbiol. 2011;61:1720-4.
-
(2011)
Int J Syst Evol Microbiol
, vol.61
, pp. 1720-1724
-
-
Liu, W.1
Jiang, L.2
Guo, C.3
Yang, S.4
-
39
-
-
78149452539
-
Halophiles 2010: Life in saline environments
-
1:CAS:528:DC%2BC3MXkvVCm
-
Ma Y, Galinski EA, Grant WD, Oren A, Ventosa A. Halophiles 2010: life in saline environments. Appl Environ Microb. 2010;76:6971-81.
-
(2010)
Appl Environ Microb
, vol.76
, pp. 6971-6981
-
-
Ma, Y.1
Galinski, E.A.2
Grant, W.D.3
Oren, A.4
Ventosa, A.5
-
40
-
-
0034166764
-
Halophilic adaptation of enzymes
-
1:CAS:528:DC%2BD3cXjt1Clu7o%3D
-
Madern D, Ebel C, Zaccai G. Halophilic adaptation of enzymes. Extremophiles. 2000;4:91-8.
-
(2000)
Extremophiles
, vol.4
, pp. 91-98
-
-
Madern, D.1
Ebel, C.2
Zaccai, G.3
-
41
-
-
84931274502
-
Halophiles and their enzymes: Negativity put to good use
-
1:CAS:528:DC%2BC2MXpsVWrsbw%3D
-
DasSarma S, DasSarma P. Halophiles and their enzymes: negativity put to good use. Curr Opin Microbiol. 2015;25:120-6.
-
(2015)
Curr Opin Microbiol
, vol.25
, pp. 120-126
-
-
Dassarma, S.1
Dassarma, P.2
-
42
-
-
0031810562
-
Biology of moderately halophilic aerobic bacteria
-
1:CAS:528:DyaK1cXkt1Oitb0%3D 9618450 98923
-
Ventosa A, Nieto JJ, Oren A. Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev. 1998;62:504-44.
-
(1998)
Microbiol Mol Biol Rev
, vol.62
, pp. 504-544
-
-
Ventosa, A.1
Nieto, J.J.2
Oren, A.3
-
43
-
-
0028126935
-
Production of moderately halophilic amylase by newly isolated Micrococcus sp. 4 from a salt-pan
-
1:CAS:528:DyaK2MXitVWgtb4%3D
-
Khire JM. Production of moderately halophilic amylase by newly isolated Micrococcus sp. 4 from a salt-pan. Lett Appl Microbiol. 1994;19:210-2.
-
(1994)
Lett Appl Microbiol
, vol.19
, pp. 210-212
-
-
Khire, J.M.1
-
44
-
-
85016099175
-
Halophilic mechanism of the enzymatic function of a moderately halophilic dihydrofolate reductase from Haloarcula japonica strain TR-1
-
1:CAS:528:DC%2BC2sXlt1elsbY%3D
-
Miyashita Y, Ohmae E, Ikura T, Nakasone K, Katayanagi K. Halophilic mechanism of the enzymatic function of a moderately halophilic dihydrofolate reductase from Haloarcula japonica strain TR-1. Extremophiles. 2017;21:591-602.
-
(2017)
Extremophiles
, vol.21
, pp. 591-602
-
-
Miyashita, Y.1
Ohmae, E.2
Ikura, T.3
Nakasone, K.4
Katayanagi, K.5
-
45
-
-
85039039628
-
A distal loop controls product release and chemo- and regioselectivity in cytochrome P450 decarboxylases
-
Amaya JA, Rutland CD, Leschinsky N, Makris TM. A distal loop controls product release and chemo- and regioselectivity in cytochrome P450 decarboxylases. Biochemistry. 2017;57:344-53.
-
(2017)
Biochemistry
, vol.57
, pp. 344-353
-
-
Amaya, J.A.1
Rutland, C.D.2
Leschinsky, N.3
Makris, T.M.4
-
46
-
-
85059401371
-
Mechanistic studies of fatty acid activation by CYP152 peroxygenases reveal unexpected desaturase activity
-
Pickl M, Kurakin S, Cantú Reinhard FG, Schmid P, Pöcheim A, Winkler CK, Kroutil W, Visser SP, Faber K. Mechanistic studies of fatty acid activation by CYP152 peroxygenases reveal unexpected desaturase activity. ACS Catal. 2018;9:565-77.
-
(2018)
ACS Catal
, vol.9
, pp. 565-577
-
-
Pickl, M.1
Kurakin, S.2
Cantú Reinhard, F.G.3
Schmid, P.4
Pöcheim, A.5
Winkler, C.K.6
Kroutil, W.7
Visser, S.P.8
Faber, K.9
-
47
-
-
34248567845
-
Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes
-
1:CAS:528:DC%2BD2sXhtFGnur%2FP
-
Reetz MT, José Daniel C. Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat Protoc. 2007;2:891-903.
-
(2007)
Nat Protoc
, vol.2
, pp. 891-903
-
-
Reetz, M.T.1
José Daniel, C.2
-
48
-
-
22144485602
-
Expanding the range of substrate acceptance of enzymes: Combinatorial active-site saturation test
-
Reetz MT, Bocola M, Carballeira JD, Zha D, Vogel A. Expanding the range of substrate acceptance of enzymes: combinatorial active-site saturation test. Angew Chem Int Ed Engl. 2005;117:4192-6.
-
(2005)
Angew Chem Int Ed Engl
, vol.117
, pp. 4192-4196
-
-
Reetz, M.T.1
Bocola, M.2
Carballeira, J.D.3
Zha, D.4
Vogel, A.5
-
49
-
-
0000959078
-
Solute concentrations within cells of halophilic and non-halophilic bacteria
-
1:CAS:528:DyaF3sXktFGqsg%3D%3D
-
Christian JHB, Waltho JA. Solute concentrations within cells of halophilic and non-halophilic bacteria. BBA Bioenerg. 1962;65:506-8.
-
(1962)
BBA Bioenerg
, vol.65
, pp. 506-508
-
-
Christian, J.H.B.1
Waltho, J.A.2
-
50
-
-
0028034679
-
Stability against denaturation mechanisms in halophilic malate dehydrogenase "adapt" to solvent conditions
-
Bonneté F, Madern D, Zaccai G. Stability against denaturation mechanisms in halophilic malate dehydrogenase "adapt" to solvent conditions. J Mol Biol. 1994;244:436-47.
-
(1994)
J Mol Biol
, vol.244
, pp. 436-447
-
-
Bonneté, F.1
Madern, D.2
Zaccai, G.3
-
51
-
-
0033551441
-
Relative role of anions and cations in the stabilization of halophilic malate dehydrogenase
-
1:CAS:528:DyaK1MXjvFGitb8%3D
-
Ebel C, Faou P, Kernel B, Zaccai G. Relative role of anions and cations in the stabilization of halophilic malate dehydrogenase. Biochemistry. 1999;38:9039-47.
-
(1999)
Biochemistry
, vol.38
, pp. 9039-9047
-
-
Ebel, C.1
Faou, P.2
Kernel, B.3
Zaccai, G.4
-
52
-
-
0029892688
-
Investigation of the effect of combined variations in temperature, pH, and NaCl concentration on nisin inhibition of Listeria monocytogenes and Staphylococcus aureus
-
1:CAS:528:DyaK28XjtlGgs70%3D
-
Thomas LV, Wimpenny JW. Investigation of the effect of combined variations in temperature, pH, and NaCl concentration on nisin inhibition of Listeria monocytogenes and Staphylococcus aureus. Appl Environ Microb. 1996;62:2006-12.
-
(1996)
Appl Environ Microb
, vol.62
, pp. 2006-2012
-
-
Thomas, L.V.1
Wimpenny, J.W.2
-
53
-
-
85041615941
-
Characterisation of CYP102A25 from B. Marmarensis and CYP102A26 from P. Halophilus: P450 homologues of BM3 with preference towards hydroxylation of medium chain fatty acids
-
Porter JL, Manning J, Sabatini S, Tavanti M, Turner NJ, Flitsch SL. Characterisation of CYP102A25 from B. marmarensis and CYP102A26 from P. halophilus: P450 homologues of BM3 with preference towards hydroxylation of medium chain fatty acids. Chembiochem. 2017;19:513-20.
-
(2017)
Chembiochem
, vol.19
, pp. 513-520
-
-
Porter, J.L.1
Manning, J.2
Sabatini, S.3
Tavanti, M.4
Turner, N.J.5
Flitsch, S.L.6
-
54
-
-
85042385736
-
Cloning, expression and characterisation of P450-Hal1 (CYP116B62) from Halomonas sp. NCIMB 172: A self-sufficient P450 with high expression and diverse substrate scope
-
1:CAS:528:DC%2BC1cXjt1Sgtbw%3D
-
Porter JL, Sabatini S, Manning J, Tavanti M, Galman JL, Turner NJ, Flitsch SL. Cloning, expression and characterisation of P450-Hal1 (CYP116B62) from Halomonas sp. NCIMB 172: a self-sufficient P450 with high expression and diverse substrate scope. Enzyme Microb Tech. 2018;113:1-8.
-
(2018)
Enzyme Microb Tech
, vol.113
, pp. 1-8
-
-
Porter, J.L.1
Sabatini, S.2
Manning, J.3
Tavanti, M.4
Galman, J.L.5
Turner, N.J.6
Flitsch, S.L.7
-
55
-
-
0028958071
-
Structural features that stabilize halophilic malate dehydrogenase from an archaebacterium
-
1:CAS:528:DyaK2MXktF2itrk%3D
-
Dym O, Mevarech M, Sussman JL. Structural features that stabilize halophilic malate dehydrogenase from an archaebacterium. Science. 1995;267:1344-6.
-
(1995)
Science
, vol.267
, pp. 1344-1346
-
-
Dym, O.1
Mevarech, M.2
Sussman, J.L.3
-
56
-
-
33645529310
-
Analysis of protein solvent interactions in glucose dehydrogenase from the extreme halophile Haloferax mediterranei
-
1:CAS:528:DC%2BD28XjsVGmu7c%3D
-
Britton KL, Baker PJ, Fisher M, Ruzneinikov S, Grlmour DJ, Bonete MJ, Ferrer J, Pire C, Esclapez J, Rice DW. Analysis of protein solvent interactions in glucose dehydrogenase from the extreme halophile Haloferax mediterranei. Proc Natl Acad Sci USA. 2006;103:4846-51.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 4846-4851
-
-
Britton, K.L.1
Baker, P.J.2
Fisher, M.3
Ruzneinikov, S.4
Grlmour, D.J.5
Bonete, M.J.6
Ferrer, J.7
Pire, C.8
Esclapez, J.9
Rice, D.W.10
-
57
-
-
84870170311
-
Effect of NaCl on the conformational stability of the thermophilic γ-glutamyltranspeptidase from Geobacillus thermodenitrificans: Implication for globular protein halotolerance
-
1:CAS:528:DC%2BC38XhvV2ku77N
-
Pica A, Krauss IR, Castellano I, Cara FL, Graziano G, Sica F, Merlino A. Effect of NaCl on the conformational stability of the thermophilic γ-glutamyltranspeptidase from Geobacillus thermodenitrificans: implication for globular protein halotolerance. BBA Proteins Proteom. 2013;1834:149-57.
-
(2013)
BBA Proteins Proteom
, vol.1834
, pp. 149-157
-
-
Pica, A.1
Krauss, I.R.2
Castellano, I.3
Cara, F.L.4
Graziano, G.5
Sica, F.6
Merlino, A.7
-
58
-
-
22444448077
-
Characterization of halophilic alkaline phosphatase from Halomonas sp. 593, a moderately halophilic bacterium
-
1:CAS:528:DC%2BD2MXmtFKmtr0%3D
-
Ishibashi M, Yamashita S, Tokunaga M. Characterization of halophilic alkaline phosphatase from Halomonas sp. 593, a moderately halophilic bacterium. Biosci biotechnol biochem. 2005;69:1213-6.
-
(2005)
Biosci Biotechnol Biochem
, vol.69
, pp. 1213-1216
-
-
Ishibashi, M.1
Yamashita, S.2
Tokunaga, M.3
-
59
-
-
84931574824
-
Methods for the directed evolution of proteins
-
1:CAS:528:DC%2BC2MXhtFeju73O
-
Packer MS, Liu DR. Methods for the directed evolution of proteins. Nat Rev Genet. 2015;16:379-94.
-
(2015)
Nat Rev Genet
, vol.16
, pp. 379-394
-
-
Packer, M.S.1
Liu, D.R.2
-
60
-
-
84908575740
-
Advances in the directed evolution of proteins
-
1:CAS:528:DC%2BC2cXhslGnsL7F
-
Lane MD, Seelig B. Advances in the directed evolution of proteins. Curr Opin Chem Biol. 2014;22:129-36.
-
(2014)
Curr Opin Chem Biol
, vol.22
, pp. 129-136
-
-
Lane, M.D.1
Seelig, B.2
-
61
-
-
0033023419
-
Directed evolution of biocatalysts
-
1:CAS:528:DyaK1MXht1ektLc%3D
-
Arnold FH, Volkov AA. Directed evolution of biocatalysts. Curr Opin Chem Biol. 1999;3:54-9.
-
(1999)
Curr Opin Chem Biol
, vol.3
, pp. 54-59
-
-
Arnold, F.H.1
Volkov, A.A.2
-
62
-
-
0024520745
-
Site-directed mutagenesis by overlap extension using the polymerase chain-reaction
-
1:CAS:528:DyaL1MXktVaitrk%3D
-
Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR. Site-directed mutagenesis by overlap extension using the polymerase chain-reaction. Gene. 1989;77:51-9.
-
(1989)
Gene
, vol.77
, pp. 51-59
-
-
Ho, S.N.1
Hunt, H.D.2
Horton, R.M.3
Pullen, J.K.4
Pease, L.R.5
-
63
-
-
78651165715
-
The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature
-
1:CAS:528:DyaF2cXktF2gur4%3D 14209971
-
Omura T, Sato R. The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J Biol Chem. 1964;239:2370-8.
-
(1964)
J Biol Chem
, vol.239
, pp. 2370-2378
-
-
Omura, T.1
Sato, R.2
-
64
-
-
80054709693
-
Quantitative analysis of fatty-acid-based biofuels produced by wild-type and genetically engineered cyanobacteria by gas chromatography-mass spectrometry
-
1:CAS:528:DC%2BC3MXhtlejt77J
-
Guan W, Zhao H, Lu X, Wang C, Yang M, Bai F. Quantitative analysis of fatty-acid-based biofuels produced by wild-type and genetically engineered cyanobacteria by gas chromatography-mass spectrometry. J Chromatogra A. 2011;1218:8289-93.
-
(2011)
J Chromatogra A
, vol.1218
, pp. 8289-8293
-
-
Guan, W.1
Zhao, H.2
Lu, X.3
Wang, C.4
Yang, M.5
Bai, F.6
|